Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(6): 5683-5692, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38288746

RESUMEN

A comprehensive theoretical investigation was performed to illuminate the influence of hydrogen bonds (H-bonds) on the obscure reaction of a hydroxyl radical (HO˙) and guanine (G) by selecting the building block of parallel triplex DNA, C(H+)GC, as the model. By mapping the energy profiles for addition and hydrogen abstraction reactions, the favorable pathway is predicted. The results reveal that in the C(H+)GC context, barrierless hydrogen abstraction from N2 of G leading to a neutral radical G(N2-H)˙ appears to become significant, but electrophilic attack by HO˙ on C8 of G resulting in 8-oxoG is the most thermodynamically favorable course. This shows a strong structural dependence due to the context constrained by the H-bond, which is dramatically different from the situation in unencumbered G. More interestingly, it proves that the stability order of resulting adduct radicals is not altered by H-bonding, but the activity for possible sites of the hydroxylation reaction changes. The significant influence of the H-bond on elementary reactions involved in the reaction is emphasized in the C(H+)GC context but is not restricted to the H-abstraction reaction. It is greatly anticipated that the present study could provide thoughtful insights into the vague hydroxyl radical-induced oxidation chemistry.

2.
J Nanobiotechnology ; 22(1): 252, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750509

RESUMEN

With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.


Asunto(s)
Envejecimiento , Depuradores de Radicales Libres , Nanoestructuras , Estrés Oxidativo , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Humanos , Nanoestructuras/química , Envejecimiento/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/química
3.
Anal Chem ; 95(40): 15068-15077, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37767787

RESUMEN

Fluorescence imaging can improve surgical accuracy in ovarian cancer, but a high signal-to-noise ratio is crucial for tiny metastatic cancers. Meanwhile, intraoperative fluorescent surgical navigation modalities alone are still insufficient to completely remove ovarian cancer lesions, and the recurrence rate remains high. Here, we constructed a cancer-associated fibroblasts (CAFs)-mimetic aggregation-induced emission (AIE) probe to enable full-cycle management of surgery that eliminates recurrence. AIE molecules (P3-PPh3) were packed in hollow mesoporous silica nanoparticles (HMSNs) to form HMSN-probe and then coated with a CAFs membrane to prepare CAF-probe. First, due to the negative potential of the CAF-probe, the circulation time in vivo is elevated, which facilitates passive tumor targeting. Second, the CAF-probe avoids its clearance by the immune system and improves the bioavailability. Finally, the fibronectin on the CAF-probe specifically binds to integrin α-5 (ITGA5), which is highly expressed in ovarian cancer cells, enabling fluorescence imaging with a contrast of up to 8.6. CAF-probe-based fluorescence imaging is used to evaluate the size and location of ovarian cancer before surgery (preoperative evaluation), to guide tumor removal during surgery (intraoperative navigation), and to monitor tumor recurrence after surgery (postoperative monitoring), ultimately significantly improving the efficiency of surgery and completely eliminating tumor recurrence. In conclusion, we constructed a CAFs mimetic AIE probe and established a full-cycle surgical management model based on its precise imaging properties, which significantly reduced the recurrence of ovarian cancer.

4.
Mol Hum Reprod ; 29(5)2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-36892447

RESUMEN

Semaphorins are a family of evolutionarily conserved morphogenetic molecules that were initially found to be associated with axonal guidance. Semaphorin 4C (Sema4C), a member of the fourth subfamily of semaphorins, has been demonstrated to play multifaceted and important roles in organ development, immune regulation, tumor growth, and metastasis. However, it is completely unknown whether Sema4C is involved in the regulation of ovarian function. We found that Sema4C was widely expressed in the stroma, follicles, and corpus luteum of mouse ovaries, and its expression was decreased at distinct foci in ovaries of mice of mid-to-advanced reproductive age. Inhibition of Sema4C by the ovarian intrabursal administration of recombinant adeno-associated virus-shRNA significantly reduced oestradiol, progesterone, and testosterone levels in vivo. Transcriptome sequencing analysis showed changes in pathways related to ovarian steroidogenesis and the actin cytoskeleton. Similarly, knockdown of Sema4C by siRNA interference in mouse primary ovarian granulosa cells or thecal interstitial cells significantly suppressed ovarian steroidogenesis and led to actin cytoskeleton disorganization. Importantly, the cytoskeleton-related pathway RHOA/ROCK1 was simultaneously inhibited after the downregulation of Sema4C. Furthermore, treatment with a ROCK1 agonist after siRNA interference stabilized the actin cytoskeleton and reversed the inhibitory effect on steroid hormones described above. In conclusion, Sema4C may play an important role in ovarian steroidogenesis through regulation of the actin cytoskeleton via the RHOA/ROCK1 signaling pathway. These findings shed new light on the identification of dominant factors involved in the endocrine physiology of female reproduction.


Asunto(s)
Ovario , Semaforinas , Animales , Femenino , Ratones , Citoesqueleto de Actina/metabolismo , Ovario/metabolismo , ARN Interferente Pequeño/genética , Semaforinas/genética , Semaforinas/metabolismo , Transducción de Señal
5.
Chemphyschem ; 24(3): e202200625, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36175389

RESUMEN

A theoretical investigation was performed to disclose the transformation mechanism of 8-oxo-7,8-dihydroguanine radical cation (8-oxoG⋅+ ) to protonated 2-amino-5-hydroxy-7,9-dihydropurine-6,8-dione (5-OH-8-oxoG) in base pair. The energy profiles for three possible pathways of the events were mapped. It is shown that direct loss of H7 from base paired 8-oxoG⋅+ is the only energetically favorable pathway to generate neutral radical, 8-oxoG(-H7)⋅. Further oxidation of 8-oxoG(-H7)⋅ : C to 8-oxoG(-H7)+ : C is exothermic. However, the 8-oxoG(-H7)+ : C deprotonation from all possible active sites is infeasible, indicating the inaccessible second proton loss and the lack of essential intermediate 2-amino-7,9-dihydropurine-6,8-dione (8-oxoGOX ). This makes 8-oxoG(-H7)+ act as the precursor of hydration leading to the generation of protonated 5-HO-8-oxoG by stepwise fashion in base pair, which would initiate the step down guanidinohydantoin (Gh) pathway. These results clearly specify the structure-dependent transformation for 8-oxoG⋅+ and verify the emergence of protonated 5-HO-8-oxoG in base pair.


Asunto(s)
Guanina , Protones , Emparejamiento Base , Oxidación-Reducción , Guanina/química
6.
Phys Chem Chem Phys ; 25(23): 16126-16134, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37278698

RESUMEN

A DFT investigation was performed to illuminate the obscure mechanism of hydroxyl radical (OH˙) and guanine in G-quadruplex by mapping the energy profiles for both addition and hydrogen abstraction reactions. Results revealed that in G-quadruplex, the electrophilic attack of OH˙ to C8 (G) leading to 8-oxoG is the most energetically favorable course, where direct hydrogen abstraction from N2 of G to furnish neutral radicals could compete with that. Although the addition of OH˙ to C4 and C5 positions could provide stable OH-adducts, the subsequent dehydration of C4-OH adduct and hydrogen transfer of C5-OH adduct, which is a prerequisite for neutral radical formation, is rate-limited due to the high barrier manifesting the inaccessibility for these courses. Intriguingly, the identity of the decisive neutral radical was confirmed to be G(N2-H)˙ rather than the familiar G(N1-H)˙, where the hydrogen bond plays significant roles by blocking tautomerizations.


Asunto(s)
G-Cuádruplex , Radical Hidroxilo , Radical Hidroxilo/química , Guanina/química , Enlace de Hidrógeno , Hidrógeno/química , Radicales Libres
7.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401131

RESUMEN

AIMS: We determined the synergistic effects of tea tree essential oil nano-emulsion (nanoTTO) and antibiotics against multidrug-resistant (MDR) bacteria in vitro and in vivo. Then, the underlying mechanism of action of nanoTTO was investigated. METHODS AND RESULTS: Minimum inhibitory concentrations and fractional inhibitory concentration index (FICI) were determined. The transepithelial electrical resistance (TEER) and the expression of tight junction (TJ) protein of IPEC-J2 cells were measured to determine the in vitro efficacy of nanoTTO in combination with antibiotics. A mouse intestinal infection model evaluated the in vivo synergistic efficacy. Proteome, adhesion assays, quantitative real-time PCR, and scanning electron microscopy were used to explore the underlying mechanisms. Results showed that nanoTTO was synergistic (FICI ≤ 0.5) or partial synergistic (0.5 < FICI < 1) with antibiotics against MDR Gram-positive and Gram-negative bacteria strains. Moreover, combinations increased the TEER values and the TJ protein expression of IPEC-J2 cells infected with MDR Escherichia coli. The in vivo study showed that the combination of nanoTTO and amoxicillin improved the relative weight gain and maintained the structural integrity of intestinal barriers. Proteome showed that type 1 fimbriae d-mannose specific adhesin of E. coli was downregulated by nanoTTO. Then, nanoTTO reduced bacterial adhesion and invasion and inhibited the mRNA expression of fimC, fimG, and fliC, and disrupted bacterial membranes.


Asunto(s)
Antibacterianos , Aceite de Árbol de Té , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Aceite de Árbol de Té/farmacología , Escherichia coli , Proteoma , Sinergismo Farmacológico , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana
8.
Microb Pathog ; 173(Pt A): 105824, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36243382

RESUMEN

The continuous emergence of multidrug-resistant (MDR) bacteria has posed an increasingly serious public health threat which urges people to develop some alternatives. Gallic acid (GA) is a natural ingredient in many traditional Chinese medicines, which has many biological activities, such as antibacterial, and antiseptic. Here, clinical isolates of MDR Escherichia coli (E. coli) were used to evaluate the antibacterial effect of GA and the underlying mechanism. The results revealed that GA exerted bactericidal activity and inhibited the formation of bacterial biofilm. GA enhanced the activities of ceftiofur sodium or tetracycline against E. coli, and facilitated antibiotic accumulation in bacteria. Further analysis of morphological alterations and efflux pump gene expressions confirmed that GA damaged outer and inner membranes, and suppressed the mRNA expressions of acrA, acrB, tolC, acrD and acrF involved in membrane permeability. In addition, GA showed protective effects against bacterial infection and improved the survival rates of Galleria mellonella and BALB/c mice. These data highlight a better understanding of GA against bacteria and provide an alternative strategy for MDR bacterial infection.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli , Escherichia coli , Ácido Gálico , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Gálico/farmacología , Lipoproteínas/genética , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
9.
Microb Pathog ; 162: 105314, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34838999

RESUMEN

BACKGROUND: Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common food-borne pathogen, which has the ability to infect a wide range of hosts. The increasing emergence of drug-resistant strains urgently requires new alternative therapies. Eugenol has been shown to be very effective against drug-resistant strains of Gram-negative and Gram-positive bacteria. The purpose of this study is to explore the effects of eugenol on the virulence factors and pathogenicity of S. Typhimurium. METHODS: The antibacterial activity of eugenol was investigated via the changes of cell morphology, fimbriae related-genes and virulence factors of S. Typhimurium, then the pathogenicity of S. Typhimurium pretreated by eugenol to chickens was evaluated. RESULTS: Susceptibility testing showed that eugenol possessed significant antimicrobial activity. Scanning electron microscope analysis showed eugenol treatment deformed the morphology with damaged fimbriae structure of S. Typhimurium. Real time PCR assay confirmed eugenol significantly down-regulated the expressions of virulence factors (hilA, hilD, sipA, sipC, spiC, misL) of Type III secretion system (T3SS) and adherence genes (fimA, fimH, fimD, fimY, fimZ, stm0551) of Type I fimbriae (TIF). Animal experiment proved that the pathogenicity of S. Typhimurium exposed by eugenol was reduced, which was evidenced by the higher survival rate, weight gains and organs indexes, the lower bacterial loads in organs. Meanwhile, the duodenal histopathological changes were mitigated, with a significantly decline in the expressions of TNF-α, IL-6 and IL-18. CONCLUSION: In summary, eugenol pretreatment may alleviate the pathogenicity of the S. Typhimurium to chickens via wrecking the fimbriae and inhibiting the mRNA expressions of virulence factors and adhesion molecules. These data dedicated the potential mechanisms of eugenol against S. Typhimurium in vitro.


Asunto(s)
Pollos , Salmonella typhimurium , Animales , Proteínas Bacterianas , Eugenol/farmacología , Salmonella typhimurium/genética , Virulencia
10.
J Nanobiotechnology ; 20(1): 374, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953871

RESUMEN

Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.


Asunto(s)
Materiales Biocompatibles , Ovario , Envejecimiento , Femenino , Fertilidad , Humanos , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA