Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(3): 3754-3763, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770968

RESUMEN

In this paper, a composite planar spiral antenna consisting of an eight-arm equiangular spiral antenna and eight Archimedean spiral antennas has been designed to radiate electromagnetic wave carrying tunable angular momenta in a wide band. A tunable eight-way Wilkinson power divider network is used to offer three kinds of feeding modes for the equiangular spiral antenna, and thus the composite antenna can radiate the electromagnetic waves with angular momenta of the modes l=1, 2, and 3, respectively. The Archimedean spiral is introduced to improve the gain of the composite antenna in the case of the angular momentum of l=3. By analyzing axis ratio (AR) of the proposed antenna, the generated angular momentum of l=1 is spin angular momentum (SAM), and the angular momenta of both l=2 and 3 include SAM and orbital angular momentum (OAM). Simulated and measured results are given to demonstrate good performance including tunable modes, good purity and wide band.

2.
J Integr Neurosci ; 19(4): 651-662, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33378839

RESUMEN

Recent studies have shown that Nogo-A and the Nogo-A receptor affect ß-amyloid metabolism and the downstream Rho GTP enzyme signaling pathway, which may affect the levels of ß-amyloid and tau. Nogo-A may play a key role in the pathogenesis of Alzheimer's disease. However, the underlying molecular mechanisms of Fasudil treatment in Alzheimer's disease are not yet clear. Our results have found that Fasudil treatment for two months substantially ameliorated behavioral deficits, diminished ß-amyloid plaque and tau protein pathology, and alleviated neuronal apoptosis in APP/PS1 transgenic mice. More importantly, two well-established markers for synaptic function, growth-associated protein 43 and synaptophysin, were upregulated after Fasudil treatment. Finally, the levels of Nogo-A, Nogo-A receptor complex NgR/p75NTR/LINGO-1 and the downstream Rho/Rho kinase signaling pathway were significantly reduced. These findings suggest that Fasudil exerts its neuroprotective function in Alzheimer's disease by inhibiting the Nogo-A/NgR1/RhoA signaling pathway.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/efectos de los fármacos , Apoptosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas tau/efectos de los fármacos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nogo/efectos de los fármacos , Receptor Nogo 1/efectos de los fármacos , Quinasas Asociadas a rho/efectos de los fármacos
3.
J Neuroimmunol ; 346: 577284, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32652366

RESUMEN

Emerging evidence suggests an association of Alzheimer's Disease (AD) with microglial and astrocytic dysregulation. Recent studies have proposed that activated microglia can transform astrocytes to a neurotoxic A1 phenotype, which has been shown to be involved in the promotion of neuronal damage in several neurodegenerative diseases, including AD. In the present study, we observed an obvious microglial activation and A1-specific astrocyte response in the brain tissue of APP/PS1 Tg mice. Fasudil treatment improved the cognitive deficits of APP/PS1 Tg mice, inhibited microglial activation and promoted their transformation to an anti-inflammatory phenotype, and further shifted astrocytes from an A1 to an A2 phenotype. Our experiments suggest Fasudil exerted these functions by inhibing the expression of TLR4, MyD88, and NF-κB, which are key mediators of inflammation. Using in vitro experiments, we further validated in vivo findings. Our cell experiments indicated that Fasudil induces a shift of inflammatory microglia towards an anti-inflammatory phenotype. LPS-induced microglia-conditioned medium promotes A1 astrocytic polarization, but Fasudil treatment resulted in a direct transformation of A1 astrocytes to A2. To summarize, our results show that Fasudil inhibits the neurotoxic activation of microglia and shifts astrocytes towards a neuroprotective A2 phenotype, representing a promising candidate for AD treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA