RESUMEN
NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, trans-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, Zdhhc1-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.
Asunto(s)
Inflamasomas , Lipoilación , Proteína con Dominio Pirina 3 de la Familia NLR , Transporte de Proteínas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamasomas/metabolismo , Inflamasomas/genética , Animales , Fosforilación , Humanos , Ratones , Células HEK293 , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Centro Organizador de los Microtúbulos/metabolismo , Ratones Endogámicos C57BL , Red trans-Golgi/metabolismo , Ratones Noqueados , Endosomas/metabolismo , Mitocondrias/metabolismoRESUMEN
Cell cycle and metabolism are intimately intertwined, but how metabolites directly regulate cell-cycle machinery remains elusive. Liu et al.1 reveal that glycolysis end-product lactate directly binds and inhibits the SUMO protease SENP1 to govern the E3 ligase activity of the anaphase-promoting complex, leading to efficient mitotic exit in proliferative cells.
Asunto(s)
Anafase , Ácido Láctico , Mitosis , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMEN
Cyclic GMP-AMP synthase (cGAS) binds pathogenic and other cytoplasmic double-stranded DNA (dsDNA) to catalyze the synthesis of cyclic GMP-AMP (cGAMP), which serves as the secondary messenger to activate the STING pathway and innate immune responses. Emerging evidence suggests that activation of the cGAS pathway is crucial for anti-tumor immunity; however, no effective intervention method targeting cGAS is currently available. Here we report that cGAS is palmitoylated by ZDHHC9 at cysteines 404/405, which promotes the dimerization and activation of cGAS. We further identified that lysophospholipase-like 1 (LYPLAL1) depalmitoylates cGAS to compromise its normal function. As such, inhibition of LYPLAL1 significantly enhances cGAS-mediated innate immune response, elevates PD-L1 expression, and enhances anti-tumor response to PD-1 blockade. Our results therefore reveal that targeting LYPLAL1-mediated cGAS depalmitoylation contributes to cGAS activation, providing a potential strategy to augment the efficacy of anti-tumor immunotherapy.
Asunto(s)
Neoplasias , Nucleotidiltransferasas , Humanos , Nucleotidiltransferasas/metabolismo , Inmunidad Innata/genética , Neoplasias/genética , Neoplasias/terapia , InmunoterapiaRESUMEN
The GATOR2-GATOR1 signaling axis is essential for amino-acid-dependent mTORC1 activation. However, the molecular function of the GATOR2 complex remains unknown. Here, we report that disruption of the Ring domains of Mios, WDR24, or WDR59 completely impedes amino-acid-mediated mTORC1 activation. Mechanistically, via interacting with Ring domains of WDR59 and WDR24, the Ring domain of Mios acts as a hub to maintain GATOR2 integrity, disruption of which leads to self-ubiquitination of WDR24. Physiologically, leucine stimulation dissociates Sestrin2 from the Ring domain of WDR24 and confers its availability to UBE2D3 and subsequent ubiquitination of NPRL2, contributing to GATOR2-mediated GATOR1 inactivation. As such, WDR24 ablation or Ring deletion prevents mTORC1 activation, leading to severe growth defects and embryonic lethality at E10.5 in mice. Hence, our findings demonstrate that Ring domains are essential for GATOR2 to transmit amino acid availability to mTORC1 and further reveal the essentiality of nutrient sensing during embryonic development.
Asunto(s)
Complejos Multiproteicos , Serina-Treonina Quinasas TOR , Animales , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Transducción de SeñalRESUMEN
PTEN dysfunction plays a crucial role in the pathogenesis of hereditary and sporadic cancers. Here, we show that PTEN homodimerizes and, in this active conformation, exerts lipid phosphatase activity on PtdIns(3,4,5)P3. We demonstrate that catalytically inactive cancer-associated PTEN mutants heterodimerize with wild-type PTEN and constrain its phosphatase activity in a dominant-negative manner. To study the consequences of homo- and heterodimerization of wild-type and mutant PTEN in vivo, we generated Pten knockin mice harboring two cancer-associated PTEN mutations (PtenC124S and PtenG129E). Heterozygous Pten(C124S/+) and Pten(G129E/+) cells and tissues exhibit increased sensitivity to PI3-K/Akt activation compared to wild-type and Pten(+/-) counterparts, whereas this difference is no longer apparent between Pten(C124S/-) and Pten(-/-) cells. Notably, Pten KI mice are more tumor prone and display features reminiscent of complete Pten loss. Our findings reveal that PTEN loss and PTEN mutations are not synonymous and define a working model for the function and regulation of PTEN.
Asunto(s)
Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Animales , Embrión de Mamíferos/citología , Femenino , Humanos , Pérdida de Heterocigocidad , Masculino , Ratones , Mutación , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Aberrant energy status contributes to multiple metabolic diseases, including obesity, diabetes, and cancer, but the underlying mechanism remains elusive. Here, we report that ketogenic-diet-induced changes in energy status enhance the efficacy of anti-CTLA-4 immunotherapy by decreasing PD-L1 protein levels and increasing expression of type-I interferon (IFN) and antigen presentation genes. Mechanistically, energy deprivation activates AMP-activated protein kinase (AMPK), which in turn, phosphorylates PD-L1 on Ser283, thereby disrupting its interaction with CMTM4 and subsequently triggering PD-L1 degradation. In addition, AMPK phosphorylates EZH2, which disrupts PRC2 function, leading to enhanced IFNs and antigen presentation gene expression. Through these mechanisms, AMPK agonists or ketogenic diets enhance the efficacy of anti-CTLA-4 immunotherapy and improve the overall survival rate in syngeneic mouse tumor models. Our findings reveal a pivotal role for AMPK in regulating the immune response to immune-checkpoint blockade and advocate for combining ketogenic diets or AMPK agonists with anti-CTLA4 immunotherapy to combat cancer.
Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Antígeno B7-H1/genética , Neoplasias de la Mama/genética , Antígeno CTLA-4/genética , Neoplasias Colorrectales/genética , Inhibidores de Puntos de Control Inmunológico , Proteínas Quinasas Activadas por AMP/inmunología , Aloinjertos , Animales , Anticuerpos Neutralizantes/farmacología , Antineoplásicos/farmacología , Antígeno B7-H1/inmunología , Compuestos de Bifenilo/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/terapia , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/terapia , Dieta Cetogénica/métodos , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia/métodos , Proteínas con Dominio MARVEL/genética , Proteínas con Dominio MARVEL/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Pironas/farmacología , Transducción de Señal , Análisis de Supervivencia , Tiofenos/farmacologíaRESUMEN
OTULIN coordinates with LUBAC to edit linear polyubiquitin chains in embryonic development, autoimmunity, and inflammatory diseases. However, the mechanism by which angiogenesis, especially that of endothelial cells (ECs), is regulated by linear ubiquitination remains unclear. Here, we reveal that constitutive or EC-specific deletion of Otulin resulted in arteriovenous malformations and embryonic lethality. LUBAC conjugates linear ubiquitin chains onto Activin receptor-like kinase 1 (ALK1), which is responsible for angiogenesis defects, inhibiting ALK1 enzyme activity and Smad1/5 activation. Conversely, OTULIN deubiquitinates ALK1 to promote Smad1/5 activation. Consistently, embryonic survival of Otulin-deficient mice was prolonged by BMP9 pretreatment or EC-specific ALK1Q200D (constitutively active) knockin. Moreover, mutant ALK1 from type 2 hereditary hemorrhagic telangiectasia (HHT2) patients exhibited excessive linear ubiquitination and increased HOIP binding. As such, a HOIP inhibitor restricted the excessive angiogenesis of ECs derived from ALK1G309S-expressing HHT2 patients. These results show that OTULIN and LUBAC govern ALK1 activity to balance EC angiogenesis.
Asunto(s)
Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Endopeptidasas/genética , Complejos Multiproteicos/metabolismo , Neovascularización Patológica/genética , Poliubiquitina/metabolismo , Adulto , Animales , Endopeptidasas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Factor 2 de Diferenciación de Crecimiento/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones Mutantes , Mutación , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Telangiectasia Hemorrágica Hereditaria , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration.
Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Neoplasias de la Próstata/patología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Quinasa de la Caseína I/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Humanos , Lisina/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Neoplasias de la Próstata/metabolismo , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/genética , Alineación de Secuencia , UbiquitinaciónRESUMEN
Akt kinase plays a central role in cell growth, metabolism, and tumorigenesis. The TRAF6 E3 ligase orchestrates IGF-1-mediated Akt ubiquitination and activation. Here, we show that Akt ubiquitination is also induced by activation of ErbB receptors; unexpectedly, and in contrast to IGF-1 induced activation, the Skp2 SCF complex, not TRAF6, is a critical E3 ligase for ErbB-receptor-mediated Akt ubiquitination and membrane recruitment in response to EGF. Skp2 deficiency impairs Akt activation, Glut1 expression, glucose uptake and glycolysis, and breast cancer progression in various tumor models. Moreover, Skp2 overexpression correlates with Akt activation and breast cancer metastasis and serves as a marker for poor prognosis in Her2-positive patients. Finally, Skp2 silencing sensitizes Her2-overexpressing tumors to Herceptin treatment. Our study suggests that distinct E3 ligases are utilized by diverse growth factors for Akt activation and that targeting glycolysis sensitizes Her2-positive tumors to Herceptin treatment.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Transformación Celular Neoplásica , Proteínas F-Box/metabolismo , Glucólisis , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Receptor ErbB-2/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Trastuzumab , UbiquitinaciónRESUMEN
UBE2M and UBE2F are two family members of neddylation E2 conjugating enzyme that, together with E3s, activate CRLs (Cullin-RING Ligases) by catalyzing cullin neddylation. However, whether and how two E2s cross-talk with each other are largely unknown. Here, we report that UBE2M is a stress-inducible gene subjected to cis-transactivation by HIF-1 and AP1, and MLN4924, a small molecule inhibitor of E1 NEDD8-activating enzyme (NAE), upregulates UBE2M via blocking degradation of HIF-1α and c-JUN. UBE2M is a dual E2 for targeted ubiquitylation and degradation of UBE2F, acting as a neddylation E2 to activate CUL3-Keap1 E3 under physiological conditions but as a ubiquitylation E2 for Parkin-DJ-1 E3 under stressed conditions. UBE2M-induced UBE2F degradation leads to CRL5 inactivation and subsequent NOXA accumulation to suppress the growth of lung cancer cells. Collectively, our study establishes a negative regulatory axis between two neddylation E2s with UBE2M ubiquitylating UBE2F, and two CRLs with CRL3 inactivating CRL5.
Asunto(s)
Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Proteínas Cullin/metabolismo , Ciclopentanos/farmacología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pirimidinas/farmacología , Estrés Fisiológico/fisiología , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/biosíntesis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismoRESUMEN
Sustained energy starvation leads to activation of AMP-activated protein kinase (AMPK), which coordinates energy status with numerous cellular processes including metabolism, protein synthesis, and autophagy. Here, we report that AMPK phosphorylates the histone methyltransferase EZH2 at T311 to disrupt the interaction between EZH2 and SUZ12, another core component of the polycomb repressive complex 2 (PRC2), leading to attenuated PRC2-dependent methylation of histone H3 at Lys27. As such, PRC2 target genes, many of which are known tumor suppressors, were upregulated upon T311-EZH2 phosphorylation, which suppressed tumor cell growth both in cell culture and mouse xenografts. Pathologically, immunohistochemical analyses uncovered a positive correlation between AMPK activity and pT311-EZH2, and higher pT311-EZH2 correlates with better survival in both ovarian and breast cancer patients. Our finding suggests that AMPK agonists might be promising sensitizers for EZH2-targeting cancer therapies.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Animales , Carcinogénesis/genética , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Epigénesis Genética , Femenino , Histonas/metabolismo , Humanos , Ratones , Proteínas de Neoplasias , Proteínas Nucleares/metabolismo , Oncogenes , Neoplasias Ováricas/metabolismo , Fosforilación , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/fisiología , Factores de Transcripción , Regulación hacia ArribaRESUMEN
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
RESUMEN
The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.
RESUMEN
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic and reversible posttranslational modification that targets serine and threonine residues in a variety of proteins. Uridine diphospho-N-acetylglucosamine, which is synthesized from glucose via the hexosamine biosynthesis pathway, is the major donor of this modification. O-GlcNAc transferase is the sole enzyme that transfers GlcNAc onto protein substrates, while O-GlcNAcase is responsible for removing this modification. O-GlcNAcylation plays an important role in tumorigenesis and progression through the modification of specific protein substrates. In this review, we discuss the tumor-related biological functions of O-GlcNAcylation and summarize the recent progress in the development of pharmaceutical options to manipulate the O-GlcNAcylation of specific proteins as potential anticancer therapies.
Asunto(s)
Acetilglucosamina , Carcinogénesis , N-Acetilglucosaminiltransferasas , Neoplasias , Procesamiento Proteico-Postraduccional , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Carcinogénesis/metabolismo , Animales , Glicosilación , Antineoplásicos/uso terapéuticoRESUMEN
An Amendment to this paper has been published and can be accessed via a link at the top of the paper. The original Letter has not been corrected.
RESUMEN
Hajdu-Cheney syndrome (HCS), a rare autosomal disorder caused by heterozygous mutations in NOTCH2, is clinically characterized by acro-osteolysis, severe osteoporosis, short stature, neurological symptoms, cardiovascular defects, and polycystic kidneys. Recent studies identified that aberrant NOTCH2 signaling and consequent osteoclast hyperactivity are closely associated with the bone-related disorder pathogenesis, but the exact molecular mechanisms remain unclear. Here, we demonstrate that sustained osteoclast activity is largely due to accumulation of NOTCH2 carrying a truncated C terminus that escapes FBW7-mediated ubiquitination and degradation. Mice with osteoclast-specific Fbw7 ablation revealed osteoporotic phenotypes reminiscent of HCS, due to elevated Notch2 signaling. Importantly, administration of Notch inhibitors in Fbw7 conditional knockout mice alleviated progressive bone resorption. These findings highlight the molecular basis of HCS pathogenesis and provide clinical insights into potential targeted therapeutic strategies for skeletal disorders associated with the aberrant FBW7/NOTCH2 pathway as observed in patients with HCS.
Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Síndrome de Hajdu-Cheney , Mutación , Osteoporosis , Proteolisis , Receptor Notch2 , Animales , Línea Celular , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Ratones Noqueados , Osteoporosis/genética , Osteoporosis/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Ubiquitinación/genéticaRESUMEN
OBJECTIVE: Whether and how the PI3K-AKT pathway, a central node of metabolic homeostasis, is responsible for high-fat-induced non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remain a mystery. Characterisation of AKT regulation in this setting will provide new strategies to combat HCC. DESIGN: Metabolite library screening disclosed that palmitic acid (PA) could activate AKT. In vivo and in vitro palmitoylation assay were employed to detect AKT palmitoylation. Diverse cell and mouse models, including generation of AKT1C77S and AKT1C224S knock-in cells, Zdhhc17 and Zdhhc24 knockout mice and Akt1C224S knock-in mice were employed. Human liver tissues from patients with NASH and HCC, hydrodynamic transfection mouse model, high-fat/high-cholesterol diet (HFHCD)-induced NASH/HCC mouse model and high-fat and methionine/choline-deficient diet (HFMCD)-induced NASH mouse model were also further explored for our mechanism studies. RESULTS: By screening a metabolite library, PA has been defined to activate AKT by promoting its palmitoyl modification, an essential step for growth factor-induced AKT activation. Biologically, a high-fat diet could promote AKT kinase activity, thereby promoting NASH and liver cancer. Mechanistically, palmitoyl binding anchors AKT to the cell membrane in a PIP3-independent manner, in part by preventing AKT from assembling into an inactive polymer. The palmitoyltransferases ZDHHC17/24 were characterised to palmitoylate AKT to exert oncogenic effects. Interestingly, the anti-obesity drug orlistat or specific penetrating peptides can effectively attenuate AKT palmitoylation and activation by restricting PA synthesis or repressing AKT modification, respectively, thereby antagonising liver tumorigenesis. CONCLUSIONS: Our findings elucidate a novel fine-tuned regulation of AKT by PA-ZDHHC17/24-mediated palmitoylation, and highlight tumour therapeutic strategies by taking PA-restricted diets, limiting PA synthesis, or directly targeting AKT palmitoylation.
Asunto(s)
Carcinoma Hepatocelular , Dieta Alta en Grasa , Lipoilación , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Proteínas Proto-Oncogénicas c-akt , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/patología , Humanos , Ácido Palmítico/metabolismo , Carcinogénesis/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Masculino , Transducción de SeñalRESUMEN
Post-translational modifications (PTMs) regulate all aspects of protein function. Therefore, upstream regulators of PTMs, such as kinases, acetyltransferases, or methyltransferases, are potential therapeutic targets for human diseases, including cancer. To date, multiple inhibitors and/or agonists of these PTM upstream regulators are in clinical use, while others are still in development. However, these upstream regulators control not only the PTMs of disease-related target proteins but also other disease-irrelevant substrate proteins. Thus, nontargeted perturbing activities may introduce unwanted off-target toxicity issues that limit the use of these drugs in successful clinical applications. Therefore, alternative drugs that solely regulate a specific PTM of the disease-relevant protein target may provide a more precise effect in treating disease with relatively low side effects. To this end, chemically induced proximity has recently emerged as a powerful research tool, and several chemical inducers of proximity (CIPs) have been used to target and regulate protein ubiquitination, phosphorylation, acetylation, and glycosylation. These CIPs have a high potential to be translated into clinical drugs and several examples such as PROTACs and MGDs are now in clinical trials. Hence, more CIPs need to be developed to cover all types of PTMs, such as methylation and palmitoylation, thus providing a full spectrum of tools to regulate protein PTM in basic research and also in clinical application for effective cancer treatment.
Asunto(s)
Neoplasias , Procesamiento Proteico-Postraduccional , Humanos , Proteínas , Ubiquitinación , Fosforilación , Glicosilación , Acetilación , Neoplasias/tratamiento farmacológicoRESUMEN
Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.
Asunto(s)
ADN de Forma Z , Quimera Dirigida a la Proteólisis , Proteolisis , Adenosina Desaminasa/metabolismo , ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al ADN/metabolismoRESUMEN
Deubiquitinase-targeting chimeras (DUBTACs) have been recently developed to stabilize proteins of interest, which is in contrast to targeted protein degradation (TPD) approaches that degrade disease-causing proteins. However, to date, only the OTUB1 deubiquitinase has been utilized to develop DUBTACs via an OTUB1 covalent ligand, which could unexpectedly compromise the endogenous function of OTUB1 owing to its covalent nature. Here, we show for the first time that deubiquitinase USP7 can be harnessed for DUBTAC development. Based on a noncovalent ligand of USP7, we developed USP7-based DUBTACs that stabilized the ΔF508-CFTR mutant protein as effectively as the previously reported OTUB1-based DUBTAC. Importantly, using two different noncovalent ligands of USP7, we developed the first AMPK DUBTACs that appear to selectively stabilize different isoforms of AMPKß, leading to elevated AMPK signaling. Overall, these results highlight that, in addition to OTUB1, USP7 can be leveraged to develop DUBTACs, thus significantly expanding the limited toolbox for targeted protein stabilization and the development of novel AMPK DUBTACs as potential therapeutics.