Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 152(4): 909-22, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23394947

RESUMEN

Genetic interaction (GI) maps, comprising pairwise measures of how strongly the function of one gene depends on the presence of a second, have enabled the systematic exploration of gene function in microorganisms. Here, we present a two-stage strategy to construct high-density GI maps in mammalian cells. First, we use ultracomplex pooled shRNA libraries (25 shRNAs/gene) to identify high-confidence hit genes for a given phenotype and effective shRNAs. We then construct double-shRNA libraries from these to systematically measure GIs between hits. A GI map focused on ricin susceptibility broadly recapitulates known pathways and provides many unexpected insights. These include a noncanonical role for COPI, a previously uncharacterized protein complex affecting toxin clearance, a specialized role for the ribosomal protein RPS25, and functionally distinct mammalian TRAPP complexes. The ability to rapidly generate mammalian GI maps provides a potentially transformative tool for defining gene function and designing combination therapies based on synergistic pairs.


Asunto(s)
Transporte Biológico , Epistasis Genética , Ricina/toxicidad , Atorvastatina , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proteína Coat de Complejo I/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Heptanoicos/farmacología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pirroles/farmacología , ARN Interferente Pequeño , Proteínas Ribosómicas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Cell ; 151(5): 1042-54, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178123

RESUMEN

The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.


Asunto(s)
Complejos Multiproteicos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Choque Térmico/genética , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina
3.
Cell ; 149(6): 1339-52, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22682253

RESUMEN

We present a genetic interaction map of pairwise measures including ∼40% of nonessential S. pombe genes. By comparing interaction maps for fission and budding yeast, we confirmed widespread conservation of genetic relationships within and between complexes and pathways. However, we identified an important subset of orthologous complexes that have undergone functional "repurposing": the evolution of divergent functions and partnerships. We validated three functional repurposing events in S. pombe and mammalian cells and discovered that (1) two lumenal sensors of misfolded ER proteins, the kinase/nuclease Ire1 and the glucosyltransferase Gpt1, act together to mount an ER stress response; (2) ESCRT factors regulate spindle-pole-body duplication; and (3) a membrane-protein phosphatase and kinase complex, the STRIPAK complex, bridges the cis-Golgi, the centrosome, and the outer nuclear membrane to direct mitotic progression. Each discovery opens new areas of inquiry and-together-have implications for model organism-based research and the evolution of genetic systems.


Asunto(s)
Epistasis Genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Evolución Biológica , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Glicoproteínas de Membrana , Mitosis , Complejos Multiproteicos/metabolismo , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Huso Acromático , Respuesta de Proteína Desplegada
4.
Mol Cell ; 32(6): 870-7, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-19111666

RESUMEN

The endoplasmic reticulum (ER) must target potentially toxic misfolded proteins for retrotranslocation and proteasomal degradation while avoiding destruction of productive folding intermediates. For luminal proteins, this discrimination typically depends not only on the folding status of a polypeptide, but also on its glycosylation state. Two putative sugar binding proteins, Htm1p and Yos9p, are required for degradation of misfolded glycoproteins, but the nature of the glycan degradation signal and how such signals are generated and decoded remains unclear. Here we characterize Yos9p's oligosaccharide-binding specificity and find that it recognizes glycans containing terminal alpha1,6-linked mannose residues. We also provide evidence in vivo that a terminal alpha1,6-linked mannose-containing oligosaccharide is required for degradation and that Htm1p acts upstream of Yos9p to mediate the generation of such sugars. This strategy of marking potential substrates by Htm1p and decoding the signal by Yos9p is well suited to provide a proofreading mechanism that enhances substrate specificity.


Asunto(s)
Retículo Endoplásmico/metabolismo , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Secuencia de Carbohidratos , Proteínas Portadoras/química , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Glucosamina/metabolismo , Manosa , Manosidasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Polisacáridos/química , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Struct Mol Biol ; 11(7): 607-15, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15208691

RESUMEN

The AAA+ protein ClpB cooperates with the DnaK chaperone system to solubilize and refold proteins from an aggregated state. The substrate-binding site of ClpB and the mechanism of ClpB-dependent protein disaggregation are largely unknown. Here we identified a substrate-binding site of ClpB that is located at the central pore of the first AAA domain. The conserved Tyr251 residue that lines the central pore contributes to substrate binding and its crucial role was confirmed by mutational analysis and direct crosslinking to substrates. Because the positioning of an aromatic residue at the central pore is conserved in many AAA+ proteins, a central substrate-binding site involving this residue may be a common feature of this protein family. The location of the identified binding site also suggests a possible translocation mechanism as an integral part of the ClpB-dependent disaggregation reaction.


Asunto(s)
Chaperonas Moleculares/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Unión Competitiva , Modelos Químicos , Datos de Secuencia Molecular , Mutagénesis , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tirosina/metabolismo
6.
Elife ; 72018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29809151

RESUMEN

The endoplasmic reticulum (ER) supports biosynthesis of proteins with diverse transmembrane domain (TMD) lengths and hydrophobicity. Features in transmembrane domains such as charged residues in ion channels are often functionally important, but could pose a challenge during cotranslational membrane insertion and folding. Our systematic proteomic approaches in both yeast and human cells revealed that the ER membrane protein complex (EMC) binds to and promotes the biogenesis of a range of multipass transmembrane proteins, with a particular enrichment for transporters. Proximity-specific ribosome profiling demonstrates that the EMC engages clients cotranslationally and immediately following clusters of TMDs enriched for charged residues. The EMC can remain associated after completion of translation, which both protects clients from premature degradation and allows recruitment of substrate-specific and general chaperones. Thus, the EMC broadly enables the biogenesis of multipass transmembrane proteins containing destabilizing features, thereby mitigating the trade-off between function and stability.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Transporte de Proteínas , Proteómica , Ribosomas/metabolismo
7.
Microb Cell Fact ; 3(1): 1, 2004 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-14728719

RESUMEN

Aprotein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and prevents the aggregation of misfolded proteins by either refolding or degrading aggregation-prone species. During severe stress conditions this protection system can be overwhelmed by high substrate load, resulting in the formation of protein aggregates. In such emergency situations, Hsp104/ClpB becomes a key player for cell survival, as it has the extraordinary capacity to rescue proteins from an aggregated state in cooperation with an Hsp70 chaperone system. The ring-forming Hsp104/ClpB chaperone belongs to the AAA+ protein superfamily, which in general drives the assembly and disassembly of protein complexes by ATP-dependent remodelling of protein substrates. A disaggregation activity was also recently attributed to other eubacterial AAA+ proteins, while such an activity has not yet been identified in mammalian cells. In this review, we report on new insights into the mechanism of protein disaggregation by AAA+ proteins, suggesting that these chaperones act as molecular crowbars or ratchets.

8.
Science ; 323(5922): 1693-7, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19325107

RESUMEN

Protein folding in the endoplasmic reticulum is a complex process whose malfunction is implicated in disease and aging. By using the cell's endogenous sensor (the unfolded protein response), we identified several hundred yeast genes with roles in endoplasmic reticulum folding and systematically characterized their functional interdependencies by measuring unfolded protein response levels in double mutants. This strategy revealed multiple conserved factors critical for endoplasmic reticulum folding, including an intimate dependence on the later secretory pathway, a previously uncharacterized six-protein transmembrane complex, and a co-chaperone complex that delivers tail-anchored proteins to their membrane insertion machinery. The use of a quantitative reporter in a comprehensive screen followed by systematic analysis of genetic dependencies should be broadly applicable to functional dissection of complex cellular processes from yeast to human.


Asunto(s)
Retículo Endoplásmico/metabolismo , Genes Fúngicos , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Epistasis Genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Fenotipo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vías Secretoras
9.
Mol Cell ; 25(2): 247-60, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17244532

RESUMEN

The AAA(+) chaperone ClpB mediates the reactivation of aggregated proteins in cooperation with the DnaK chaperone system. ClpB consists of two AAA domains that drive the ATP-dependent threading of substrates through a central translocation channel. Its unique middle (M) domain forms a coiled-coil structure that laterally protrudes from the ClpB ring and is essential for aggregate solubilization. Here, we demonstrate that the conserved helix 3 of the M domain is specifically required for the DnaK-dependent shuffling of aggregated proteins, but not of soluble denatured substrates, to the pore entrance of the ClpB translocation channel. Helix 3 exhibits nucleotide-driven conformational changes possibly involving a transition between folded and unfolded states. This molecular switch controls the ClpB ATPase cycle by contacting the first ATPase domain and establishes the M domain as a regulatory device that acts in the disaggregation process by coupling the threading motor of ClpB with the DnaK chaperone activity.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Endopeptidasa Clp , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
10.
Mol Genet Genomics ; 274(1): 1-12, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15809868

RESUMEN

In this study global changes in gene expression were monitored in Bacillus subtilis cells entering stationary growth phase owing to starvation for glucose. Gene expression was analysed in growing and starving cells at different time points by full-genome mRNA profiling using DNA macroarrays. During the transition to stationary phase we observed extensive reprogramming of gene expression, with approximately 1,000 genes being strongly repressed and approximately 900 strongly up-regulated in a time-dependent manner. The genes involved in the response to glucose starvation can be assigned to two main classes: (i) general stress/starvation genes which respond to various stress or starvation stimuli, and (ii) genes that respond specifically to starvation for glucose. The first class includes members of the sigma(B)-dependent general stress regulon, as well as 90 vegetative genes, which are strongly down regulated in the course of the stringent response. Among the genes in the second class, we observed a decrease in the expression of genes encoding proteins required for glucose uptake, glycolysis and the tricarboxylic acid cycle. Conversely, many carbohydrate utilisation systems that depend on phosphotransferase systems (PTS) or ABC transporters were activated. The expression of genes required for utilisation or generation of acetate indicates that acetate constitutes an important energy source for B. subtilis during periods of glucose starvation. Finally, genome wide mRNA profiling data can be used to predict new metabolic pathways in B. subtilis. Thus, our data suggest that glucose-starved cells are able to degrade branched-chain fatty acids to pyruvate and succinate via propionyl-CoA using the methylcitrate pathway. This pathway appears to link lipid degradation to gluconeogenesis in glucose-starved cells.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Glucosa/metabolismo , ARN Bacteriano/genética , ARN Mensajero/metabolismo , Bacillus subtilis/metabolismo , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Northern Blotting , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos
11.
Biol Chem ; 386(8): 739-44, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16201868

RESUMEN

Cell survival under severe thermal stress requires the activity of a bi-chaperone system, consisting of the ring-forming AAA+ chaperone ClpB (Hsp104) and the DnaK (Hsp70) chaperone system, which acts to solubilize and reactivate aggregated proteins. Recent studies have provided novel insight into the mechanism of protein disaggregation, demonstrating that ClpB/Hsp104 extracts unfolded polypeptides from an aggregate by threading them through its central pore. This translocation activity is necessary but not sufficient for aggregate solubilization. In addition, the middle (M) domain of ClpB and the DnaK system have essential roles, possibly by providing an unfolding force, which facilitates the extraction of misfolded proteins from aggregates.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Renaturación de Proteína , Endopeptidasa Clp , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Cinética , Chaperonas Moleculares/genética , Conformación Proteica
12.
Genome Res ; 13(2): 224-37, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12566400

RESUMEN

Dual channel imaging and warping of two-dimensional (2D) protein gels were used to visualize global changes of the gene expression patterns in growing Bacillus subtilis cells during entry into the stationary phase as triggered by glucose exhaustion. The 2D gels only depict single moments during the cells' growth cycle, but a sequential series of overlays obtained at specific points of the growth curve facilitates visualization of the developmental processes at the proteomics scale. During glucose starvation a substantial reprogramming of the protein synthesis pattern was found, with 150 proteins synthesized de novo and cessation of the synthesis of almost 400 proteins. Proteins induced following glucose starvation belong to two main regulation groups: general stress/starvation responses induced by different stresses or starvation stimuli (sigma(B)-dependent general stress regulon, stringent response, sporulation), and glucose-starvation-specific responses (drop in glycolysis, utilization of alternative carbon sources, gluconeogenesis). Using the dual channel approach, it was not only possible to identify those regulons or stimulons, but also to follow the fate of each single protein by the three-color code: red, newly induced but not yet accumulated; yellow, synthesized and accumulated; and green, still present, but no longer being synthesized. These green proteins, which represent a substantial part of the protein pool in the nongrowing cell, are not accessible by using DNA arrays. The combination of 2D gel electrophoresis and MALDI TOF mass spectrometry with the dual channel imaging technique provides a new and comprehensive view of the physiology of growing or starving bacterial cell populations, here for the case of the glucose-starvation response.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/fisiología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/fisiología , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/fisiología , Glucosa/metabolismo , Biosíntesis de Péptidos/fisiología , Proteoma/análisis , Bacillus subtilis/química , Fenómenos Fisiológicos Bacterianos , Medios de Cultivo/química , Electroforesis en Gel Bidimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Estrés Oxidativo/fisiología , Intensificación de Imagen Radiográfica/métodos , Esporas Bacterianas/fisiología , Factores de Transcripción/fisiología
13.
J Biol Chem ; 278(35): 32608-17, 2003 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12805357

RESUMEN

The AAA+ protein ClpB mediates the solubilization of protein aggregates in cooperation with the DnaK chaperone system (KJE). The order of action of ClpB and KJE on aggregated proteins is unknown. We describe a ClpB variant with mutational alterations in the Walker B motif of both AAA domains (E279A/E678A), which binds but does not hydrolyze ATP. This variant associates in vitro and in vivo in a stable manner with protein substrates, demonstrating direct interaction of ClpB with protein aggregates for the first time. Substrate interaction is strictly dependent on ATP binding to both AAA domains of ClpB. The unique substrate binding properties of the double Walker B variant allowed to dissect the order of ClpB and DnaK action during disaggregation reactions. ClpB-E279A/E678A outcompetes the DnaK system for binding to the model substrate TrfA and inhibits the dissociation of small protein aggregates by DnaK only, indicating that ClpB acts prior to DnaK on protein substrates.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Mutación , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Análisis Mutacional de ADN , Electroforesis en Gel de Poliacrilamida , Endopeptidasa Clp , Proteínas HSP70 de Choque Térmico/metabolismo , Hidrólisis , Immunoblotting , Cinética , Luciferasas/metabolismo , Plásmidos/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato , Factores de Tiempo
14.
J Biol Chem ; 278(20): 17615-24, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12624113

RESUMEN

ClpB of Escherichia coli is an ATP-dependent ring-forming chaperone that mediates the resolubilization of aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the Hsp100/Clp subfamily of AAA+ proteins and is composed of an N-terminal domain and two AAA-domains that are separated by a "linker" region. Here we present a detailed structure-function analysis of ClpB, dissecting the individual roles of ClpB domains and conserved motifs in oligomerization, ATP hydrolysis, and chaperone activity. Our results show that ClpB oligomerization is strictly dependent on the presence of the C-terminal domain of the second AAA-domain, while ATP binding to the first AAA-domains stabilized the ClpB oligomer. Analysis of mutants of conserved residues in Walker A and B and sensor 2 motifs revealed that both AAA-domains contribute to the basal ATPase activity of ClpB and communicate in a complex manner. Chaperone activity strictly depends on ClpB oligomerization and the presence of a residual ATPase activity. The N-domain is dispensable for oligomerization and for the disaggregating activity in vitro and in vivo. In contrast the presence of the linker region, although not involved in oligomerization, is essential for ClpB chaperone activity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Cromatografía , Secuencia Conservada , Reactivos de Enlaces Cruzados/farmacología , Relación Dosis-Respuesta a Droga , Endopeptidasa Clp , Hidrólisis , Luciferasas/metabolismo , Mutación , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Factores de Tiempo , Triptófano/farmacología
15.
J Struct Biol ; 146(1-2): 90-8, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15037240

RESUMEN

AAA+ proteins remodel target substrates in an ATP-dependent manner, an activity that is of central importance for a plethora of cellular processes. While sharing a similar hexameric structure AAA+ proteins must exhibit differences in substrate recognition to fulfil their diverse biological functions. Here we describe strategies of AAA+ proteins to ensure substrate specificity. AAA domains can directly mediate substrate recognition, however, in general extra domains, added to the core AAA domain, control substrate interaction. Such extra domains may either directly recognize substrates or serve as a platform for adaptor proteins, which transfer bound substrates to their AAA+ partner proteins. The positioning of adaptor proteins in substrate recognition can enable them to control the activity of their partner proteins by coupling AAA+ protein activation to substrate availability.


Asunto(s)
Nucleósido-Trifosfatasa/química , Especificidad por Sustrato , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Activación Enzimática , Nucleósido-Trifosfatasa/metabolismo , Estructura Terciaria de Proteína
16.
Cell ; 119(5): 653-65, 2004 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-15550247

RESUMEN

Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We engineered a ClpB variant, BAP, which associates with the ClpP peptidase and thereby is converted into a degrading disaggregase. BAP translocates substrates through its central pore directly into ClpP for degradation. ClpB-dependent translocation is demonstrated to be an integral part of the disaggregation mechanism. Protein disaggregation by the BAP/ClpP complex remains dependent on DnaK, defining a role for DnaK at early stages of the disaggregation reaction. The activity switch of BAP to a degrading disaggregase does not support thermotolerance development, demonstrating that cell survival during severe thermal stress requires reactivation of aggregated proteins.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Chaperonas Moleculares , Pliegue de Proteína , Supervivencia Celular/genética , Endopeptidasa Clp , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/aislamiento & purificación , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Motoras Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Ingeniería de Proteínas , Transporte de Proteínas/fisiología , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA