Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38924496

RESUMEN

RATIONALE: Outdoor fine particulate air pollution (PM2.5) contributes to millions of deaths around the world each year, but much less is known about the long-term health impacts of other particulate air pollutants including ultrafine particles (a.k.a. nanoparticles) which are in the nanometer size range (<100 nm), widespread in urban environments, and not currently regulated. OBJECTIVES: Estimate the associations between long-term exposure to outdoor ultrafine particles and mortality. METHODS: Outdoor air pollution levels were linked to the residential addresses of a large, population-based cohort from 2001 - 2016. Associations between long-term exposure to outdoor ultrafine particles and nonaccidental and cause-specific mortality were estimated using Cox proportional hazards models. MEASUREMENTS: An increase in long-term exposure to outdoor ultrafine particles was associated with an increased risk of nonaccidental mortality (Hazard Ratio = 1. 073, 95% Confidence Interval = 1. 061, 1. 085) and cause-specific mortality, the strongest of which was respiratory mortality (Hazard Ratio = 1.174, 95% Confidence Interval = 1.130, 1.220). MAIN RESULTS: Long-term exposure to outdoor ultrafine particles was associated with increased risk of mortality. We estimated the mortality burden for outdoor ultrafine particles in Montreal and Toronto, Canada to be approximately 1100 additional nonaccidental deaths every year. Furthermore, we observed possible confounding by particle size which suggests that previous studies may have underestimated or missed important health risks associated with ultrafine particles. CONCLUSIONS: As outdoor ultrafine particles are not currently regulated, there is great potential for future regulatory interventions to improve population health by targeting these common outdoor air pollutants.

2.
Am J Epidemiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918040

RESUMEN

Prenatal exposures to ambient particulate matter (PM2.5) from traffic may generate oxidative stress, and thus contribute to adverse birth outcomes. We investigated whether PM2.5 constituents from brake and tire wear affect levels of oxidative stress biomarkers (malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)) using urine samples collected up to three times during pregnancy in 156 women recruited from antenatal clinics at the University of California Los Angeles. Land use regression models with co-kriging were employed to estimate average residential outdoor concentrations of black carbon (BC), PM2.5 mass, PM2.5 metal components, and three PM2.5 oxidative potential metrics during the 4-weeks prior to urine sample collection. 8-OHdG concentrations in mid-pregnancy increased by 24.8% (95% CI: 9.0, 42.8) and 14.3% (95% CI: 0.4%, 30.0%) per interquartile range (IQR) increase in PM2.5 mass and BC, respectively. The brake wear marker (barium) and the oxidative potential metrics were associated with increased MDA concentration in the 1st sample collected (10-17 gestational week), but 95% CIs included the null. Traffic-related air pollution contributed in early to mid-pregnancy to oxidative stress generation previously linked to adverse birth outcomes.

3.
Am J Epidemiol ; 192(2): 147-153, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331277

RESUMEN

Here we discuss possible violations of the "no-multiple-versions-of-treatment" assumption in studies of outdoor fine particulate air pollution (particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5)) owing to differences in particle composition, which in turn influence health. This assumption is part of the potential outcomes framework for causal inference, and it is needed for well-defined potential outcomes, as multiple versions of the same treatment could lead to different health risks for the same level of treatment. Since 2 locations can have the same outdoor PM2.5 mass concentration (i.e., treatment) but different chemical compositions (i.e., versions of treatment), violations of the "no-multiple-versions-of-treatment" assumption seem likely. Importantly, violations of this assumption will not bias health risk estimates for PM2.5 mass concentrations if there are no unmeasured confounders of the "version of treatment"-outcome relationship. However, confounding can occur if these factors are not identified and controlled for in the analysis. We describe situations in which this may occur and provide simulations to estimate the magnitude and direction of this possible bias. In general, violations of the "no-multiple-versions-of-treatment" assumption could be an underappreciated source of bias in studies of outdoor PM2.5. Analysis of the health impacts of outdoor PM2.5 mass concentrations across spatial domains with similar composition could help to address this issue.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Polvo/análisis , Causalidad , Monitoreo del Ambiente
4.
Thorax ; 78(5): 459-466, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35361687

RESUMEN

BACKGROUND: Ambient air pollution is thought to contribute to increased risk of COVID-19, but the evidence is controversial. OBJECTIVE: To evaluate the associations between short-term variations in outdoor concentrations of ambient air pollution and COVID-19 emergency department (ED) visits. METHODS: We conducted a case-crossover study of 78 255 COVID-19 ED visits in Alberta and Ontario, Canada between 1 March 2020 and 31 March 2021. Daily air pollution data (ie, fine particulate matter with diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone were assigned to individual case of COVID-19 in 10 km × 10 km grid resolution. Conditional logistic regression was used to estimate associations between air pollution and ED visits for COVID-19. RESULTS: Cumulative ambient exposure over 0-3 days to PM2.5 (OR 1.010; 95% CI 1.004 to 1.015, per 6.2 µg/m3) and NO2 (OR 1.021; 95% CI 1.015 to 1.028, per 7.7 ppb) concentrations were associated with ED visits for COVID-19. We found that the association between PM2.5 and COVID-19 ED visits was stronger among those hospitalised following an ED visit, as a measure of disease severity, (OR 1.023; 95% CI 1.015 to 1.031) compared with those not hospitalised (OR 0.992; 95% CI 0.980 to 1.004) (p value for effect modification=0.04). CONCLUSIONS: We found associations between short-term exposure to ambient air pollutants and COVID-19 ED visits. Exposure to air pollution may also lead to more severe COVID-19 disease.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Estudios Cruzados , Dióxido de Nitrógeno/toxicidad , Dióxido de Nitrógeno/análisis , COVID-19/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Ontario/epidemiología , Servicio de Urgencia en Hospital , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
5.
Epidemiology ; 34(6): 897-905, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37732880

RESUMEN

BACKGROUND: Oxidative stress plays an important role in the health impacts of both outdoor fine particulate air pollution (PM 2.5 ) and thermal stress. However, it is not clear how the oxidative potential of PM 2.5 may influence the acute cardiovascular effects of temperature. METHODS: We conducted a case-crossover study of hospitalization for cardiovascular events in 35 cities across Canada during the summer months (July-September) between 2016 and 2018. We collected three different metrics of PM 2.5 oxidative potential each month in each location. We estimated associations between lag-0 daily temperature (per 5ºC) and hospitalization for all cardiovascular (n = 44,876) and ischemic heart disease (n = 14,034) events across strata of monthly PM 2.5 oxidative potential using conditional logistical models adjusting for potential time-varying confounders. RESULTS: Overall, associations between lag-0 temperature and acute cardiovascular events tended to be stronger when outdoor PM 2.5 oxidative potential was higher. For example, when glutathione-related oxidative potential (OP GSH ) was in the highest tertile, the odds ratio (OR) for all cardiovascular events was 1.040 (95% confidence intervals [CI] = 1.004, 1.074) compared with 0.980 (95% CI = 0.943, 1.018) when OP GSH was in the lowest tertile. We observed a greater difference for ischemic heart disease events, particularly for older subjects (age >70 years). CONCLUSIONS: The acute cardiovascular health impacts of summer temperature variations may be greater when outdoor PM 2.5 oxidative potential is elevated. This may be particularly important for ischemic heart disease events.


Asunto(s)
Hospitalización , Isquemia Miocárdica , Humanos , Anciano , Estudios Cruzados , Temperatura , Canadá/epidemiología , Isquemia Miocárdica/epidemiología , Polvo , Estrés Oxidativo
6.
Environ Sci Technol ; 57(8): 3238-3247, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36787278

RESUMEN

To determine how traffic-related air pollution (TRAP) exposures affect commuter health, and whether cabin air filtration (CAF) can mitigate exposures, we conducted a cross-over study of 48 adults exposed to TRAP during two commutes with and without CAF. Measurements included particulate air pollutants (PM2.5, black carbon [BC], ultrafine particles [UFPs]), volatile organic compounds, and nitrogen dioxide. We measured participants' heart rate variability (HRV), saliva cortisol, and cognitive function. On average, CAF reduced concentrations of UFPs by 26,232 (95%CI: 11,734, 40,730) n/cm3, PM2.5 by 6 (95%CI: 5, 8) µg/m3, and BC by 1348 (95%CI: 1042, 1654) ng/m3, or 28, 30, and 32%, respectively. Each IQR increase in PM2.5 was associated with a 28% (95%CI: 2, 60) increase in high-frequency power HRV at the end of the commute and a 22% (95%CI: 7, 39) increase 45 min afterward. IQR increases in UFPs were associated with increased saliva cortisol in women during the commute (18% [95%CI: 0, 40]). IQR increases in UFPs were associated with strong switching costs (19% [95%CI: 2, 39]), indicating a reduced capacity for multitasking, and PM2.5 was associated with increased reaction latency, indicating slower responses (5% [95%CI: 1, 10]). CAF can reduce particulate exposures by almost a third.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Humanos , Femenino , Contaminantes Atmosféricos/análisis , Frecuencia Cardíaca , Estudios Cruzados , Hidrocortisona , Saliva/química , Contaminación del Aire/análisis , Material Particulado/análisis , Cognición
7.
Environ Sci Technol ; 57(23): 8548-8558, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37262367

RESUMEN

The promotion of sustainable mobility choices is a crucial element of transport decarbonization. It requires a fundamental understanding of the choices available to urban dwellers and of the equity and justice implications of green mobility solutions. In this study, we quantified personal mobility-related greenhouse gas (GHG) emissions in the Greater Toronto and Hamilton Area (GTHA) and their associations with various land use, built environment, and socioeconomic factors. Our study captured personal, household, and neighborhood-level characteristics that are related to high emissions and disparities in emissions across the study region. We observed that the top 30% of emitters generated 70% of all transportation GHG emissions. Household income, family size, and vehicle ownership were associated with increased mobility emissions, while increased population density was associated with lower emissions. The percentage of visible minorities in a neighborhood was associated with lower emissions, but this effect was small. We further contrasted the spatial distribution of traffic-related air pollution with mobility GHG emissions. The results suggest that individuals who emit less GHG live in areas with higher air pollution. A computer vision-based model was used to predict GHG emissions from aerial images of neighborhoods, demonstrating that areas with high land use mixture were linked to a lower generation of mobility-based GHG emissions.


Asunto(s)
Contaminación del Aire , Gases de Efecto Invernadero , Humanos , Carbono , Gases de Efecto Invernadero/análisis , Contaminación del Aire/análisis , Emisiones de Vehículos/análisis , Simulación por Computador , Efecto Invernadero
8.
Am J Respir Crit Care Med ; 206(11): 1370-1378, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35802828

RESUMEN

Rationale: Outdoor particulate and gaseous air pollutants impair respiratory health in children, and these associations may be influenced by particle composition. Objectives: To examine whether associations between short-term variations in fine particulate air pollution, oxidant gases, and respiratory hospitalizations in children are modified by particle constituents (metals and sulfur) or oxidative potential. Methods: We conducted a case-crossover study of 10,500 children (0-17 years of age) across Canada. Daily fine particle mass concentrations and oxidant gases (nitrogen dioxide and ozone) were collected from ground monitors. Monthly estimates of fine particle constituents (metals and sulfur) and oxidative potential were also measured. Conditional logistic regression models were used to estimate associations between air pollutants and respiratory hospitalizations, above and below median values for particle constituents and oxidative potential. Measurements and Main Results: Lag-1 fine particulate matter mass concentrations were not associated with respiratory hospitalizations (odds ratio and 95% confidence interval per 10 µg/m3 increase in fine particulate matter: 1.004 [0.955-1.056]) in analyses ignoring particle constituents and oxidative potential. However, when models were examined above or below median metals, sulfur, and oxidative potential, positive associations were observed above the median. For example, the odds ratio and 95% confidence interval per 10 µg/m3 increase in fine particulate matter were 1.084 (1.007-1.167) when copper was above the median and 0.970 (0.929-1.014) when copper was below the median. Similar trends were observed for oxidant gases. Conclusions: Stronger associations were observed between outdoor fine particles, oxidant gases, and respiratory hospitalizations in children when metals, sulfur, and particle oxidative potential were elevated.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Niño , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Cobre/efectos adversos , Cobre/análisis , Estudios Cruzados , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Hospitalización , Dióxido de Nitrógeno/efectos adversos , Oxidantes/efectos adversos , Estrés Oxidativo , Material Particulado/efectos adversos , Material Particulado/análisis , Azufre/efectos adversos , Azufre/análisis , Recién Nacido , Lactante , Preescolar , Adolescente
9.
Epidemiology ; 33(6): 767-776, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165987

RESUMEN

BACKGROUND: Populations are simultaneously exposed to outdoor concentrations of oxidant gases (i.e., O 3 and NO 2 ) and fine particulate air pollution (PM 2.5 ). Since oxidative stress is thought to be an important mechanism explaining air pollution health effects, the adverse health impacts of oxidant gases may be greater in locations where PM 2.5 is more capable of causing oxidative stress. METHODS: We conducted a cohort study of 2 million adults in Canada between 2001 and 2016 living within 10 km of ground-level monitoring sites for outdoor PM 2.5 components and oxidative potential. O x exposures (i.e., the redox-weighted average of O 3 and NO 2 ) were estimated using a combination of chemical transport models, land use regression models, and ground-level data. Cox proportional hazards models were used to estimate associations between 3-year moving average O x and mortality outcomes across strata of transition metals and sulfur in PM 2.5 and three measures of PM 2.5 oxidative potential adjusting for possible confounding factors. RESULTS: Associations between O x and mortality were consistently stronger in regions with elevated PM 2.5 transition metal/sulfur content and oxidative potential. For example, each interquartile increase (6.27 ppb) in O x was associated with a 14.9% (95% CI = 13.0, 16.9) increased risk of nonaccidental mortality in locations with glutathione-related oxidative potential (OP GSH ) above the median whereas a 2.50% (95% CI = 0.600, 4.40) increase was observed in regions with OP GSH levels below the median (interaction P value <0.001). CONCLUSION: Spatial variations in PM 2.5 composition and oxidative potential may contribute to heterogeneity in the observed health impacts of long-term exposures to oxidant gases.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Gases , Glutatión , Humanos , Oxidantes , Oxidación-Reducción , Estrés Oxidativo , Material Particulado/análisis , Azufre
10.
Environ Sci Technol ; 56(11): 7256-7265, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34965092

RESUMEN

There is growing interest to move beyond fine particle mass concentrations (PM2.5) when evaluating the population health impacts of outdoor air pollution. However, few exposure models are currently available to support such analyses. In this study, we conducted large-scale monitoring campaigns across Montreal and Toronto, Canada during summer 2018 and winter 2019 and developed models to predict spatial variations in (1) the ability of PM2.5 to generate reactive oxygen species in the lung fluid (ROS), (2) PM2.5 oxidative potential based on the depletion of ascorbate (OPAA) and glutathione (OPGSH) in a cell-free assay, and (3) anhysteretic magnetic remanence (XARM) as an indicator of magnetite nanoparticles. We also examined how exposure to PM oxidative capacity metrics (ROS/OP) varied by socioeconomic status within each city. In Montreal, areas with higher material deprivation, indicating lower area-level average household income and employment, were exposed to PM2.5 characterized by higher ROS and OP. This relationship was not observed in Toronto. The developed models will be used in epidemiologic studies to assess the health effects of exposure to PM2.5 and iron-rich magnetic nanoparticles in Toronto and Montreal.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nanopartículas de Magnetita , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Estrés Oxidativo , Material Particulado/análisis , Especies Reactivas de Oxígeno
11.
Environ Sci Technol ; 56(24): 17795-17804, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36472388

RESUMEN

Oxidative potential (OP) has been proposed as a possible integrated metric for particles smaller than 2.5 µm in diameter (PM2.5) to evaluate adverse health outcomes associated with particulate air pollution exposure. Here, we investigate how OP depends on sources and chemical composition and how OP varies by land use type and neighborhood socioeconomic position in the Los Angeles area. We measured OH formation (OPOH), dithiothreitol loss (OPDTT), black carbon, and 52 metals and elements for 54 total PM2.5 samples collected in September 2019 and February 2020. The Positive Matrix Factorization source apportionment model identified four sources contributing to volume-normalized OPOH: vehicular exhaust, brake and tire wear, soil and road dust, and mixed secondary and marine. Exhaust emissions contributed 42% of OPOH, followed by 21% from brake and tire wear. Similar results were observed for the OPDTT source apportionment. Furthermore, by linking measured PM2.5 and OP with census tract level socioeconomic and health outcome data provided by CalEnviroScreen, we found that the most disadvantaged neighborhoods were exposed to both the most toxic particles and the highest particle concentrations. OPOH exhibited the largest inverse social gradients, followed by OPDTT and PM2.5 mass. Finally, OPOH was the metric most strongly correlated with adverse health outcome indicators.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Los Angeles , Emisiones de Vehículos/análisis , Polvo/análisis , Factores Socioeconómicos , Estrés Oxidativo , Monitoreo del Ambiente/métodos
12.
Environ Sci Technol ; 56(18): 12886-12897, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36044680

RESUMEN

Within-city ultrafine particle (UFP) concentrations vary sharply since they are influenced by various factors. We developed prediction models for short-term UFP exposures using street-level images collected by a camera installed on a vehicle rooftop, paired with air quality measurements conducted during a large-scale mobile monitoring campaign in Toronto, Canada. Convolutional neural network models were trained to extract traffic and built environment features from images. These features, along with regional air quality and meteorology data were used to predict short-term UFP concentration as a continuous and categorical variable. A gradient boost model for UFP as a continuous variable achieved R2 = 0.66 and RMSE = 9391.8#/cm3 (mean values for 10-fold cross-validation). The model predicting categorical UFP achieved accuracies for "Low" and "High" UFP of 77 and 70%, respectively. The presence of trucks and other traffic parameters were associated with higher UFPs, and the spatial distribution of elevated short-term UFP followed the distribution of single-unit trucks. This study demonstrates that pictures captured on urban streets, associated with regional air quality and meteorology, can adequately predict short-term UFP exposure. Capturing the spatial distribution of high-frequency short-term UFP spikes in urban areas provides crucial information for the management of near-road air pollution hot spots.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente/métodos , Tamaño de la Partícula , Material Particulado/análisis
13.
Environ Res ; 206: 112566, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34922985

RESUMEN

BACKGROUND: The exacerbation of asthma and respiratory allergies has been associated with exposure to aeroallergens such as pollen. Within an urban area, tree cover, level of urbanization, atmospheric conditions, and the number of source plants can influence spatiotemporal variations in outdoor pollen concentrations. OBJECTIVE: We analyze weekly pollen measurements made between March and October 2018 over 17 sites in Toronto, Canada. The main goals are: to estimate the concentration of different types of pollen across the season; estimate the association, if any, between pollen concentration and environmental variables, and provide a spatiotemporal surface of concentration of different types of pollen across the weeks in the studied period. METHODS: We propose an extension of the land-use regression model to account for the temporal variation of pollen levels and the high number of measurements equal to zero. Inference is performed under the Bayesian framework, and uncertainty of predicted values is naturally obtained through the posterior predictive distribution. RESULTS: Tree pollen was positively associated with commercial areas and tree cover, and negatively associated with grass cover. Both grass and weed pollen were positively associated with industrial areas and TC brightness and negatively associated with the northing coordinate. The total pollen was associated with a combination of these environmental factors. Predicted surfaces of pollen concentration are shown at some sampled weeks for all pollen types. SIGNIFICANCE: The predicted surfaces obtained here can help future epidemiological studies to find possible associations between pollen levels and some health outcome like respiratory allergies at different locations within the study area.


Asunto(s)
Alérgenos , Polen , Teorema de Bayes , Ciudades , Monitoreo del Ambiente , Poaceae , Estaciones del Año
14.
Environ Health ; 21(1): 90, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36184638

RESUMEN

BACKGROUND: Excess reactive oxygen species (ROS) can cause oxidative stress damaging cells and tissues, leading to adverse health effects in the respiratory tract. Yet, few human epidemiological studies have quantified the adverse effect of early life exposure to ROS on child health. Thus, this study aimed to examine the association of levels of ROS exposure at birth and the subsequent risk of developing common respiratory and allergic diseases in children. METHODS: 1,284 Toronto Child Health Evaluation Questionnaire (T-CHEQ) participants were followed from birth (born between 1996 and 2000) until outcome, March 31, 2016 or loss-to-follow-up. Using ROS data from air monitoring campaigns and land use data in Toronto, ROS concentrations generated in the human respiratory tract in response to inhaled pollutants were estimated using a kinetic multi-layer model. These ROS values were assigned to participants' postal codes at birth. Cox proportional hazards regression models, adjusted for confounders, were then used to estimate hazard ratios (HR) with 95% confidence intervals (CI) per unit increase in interquartile range (IQR). RESULTS: After adjusting for confounders, iron (Fe) and copper (Cu) were not significantly associated with the risk of asthma, allergic rhinitis, nor eczema. However, ROS, a measure of the combined impacts of Fe and Cu in PM2.5, was associated with an increased risk of asthma (HR = 1.11, 95% CI: 1.02-1.21, p < 0.02) per IQR. There were no statistically significant associations of ROS with allergic rhinitis (HR = 0.96, 95% CI: 0.88-1.04, p = 0.35) and eczema (HR = 1.03, 95% CI: 0.98-1.09, p = 0.24). CONCLUSION: These findings showed that ROS exposure in early life significantly increased the childhood risk of asthma, but not allergic rhinitis and eczema.


Asunto(s)
Contaminantes Atmosféricos , Asma , Eccema , Contaminantes Ambientales , Rinitis Alérgica , Rinitis , Contaminantes Atmosféricos/análisis , Asma/inducido químicamente , Asma/epidemiología , Niño , Estudios de Cohortes , Cobre , Eccema/inducido químicamente , Eccema/epidemiología , Humanos , Recién Nacido , Hierro , Estudios Longitudinales , Material Particulado , Especies Reactivas de Oxígeno , Sistema Respiratorio , Rinitis/inducido químicamente , Rinitis Alérgica/inducido químicamente
15.
Am J Respir Crit Care Med ; 204(2): 168-177, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33798018

RESUMEN

Rationale: Evidence linking outdoor air pollution with coronavirus disease (COVID-19) incidence and mortality is largely based on ecological comparisons between regions that may differ in factors such as access to testing and control measures that may not be independent of air pollution concentrations. Moreover, studies have yet to focus on key mechanisms of air pollution toxicity such as oxidative stress. Objectives: To conduct a within-city analysis of spatial variations in COVID-19 incidence and the estimated generation of reactive oxygen species (ROS) in lung lining fluid attributable to fine particulate matter (particulate matter with an aerodynamic diameter ⩽2.5 µm [PM2.5]). Methods: Sporadic and outbreak-related COVID-19 case counts, testing data, population data, and sociodemographic data for 140 neighborhoods were obtained from the City of Toronto. ROS estimates were based on a mathematical model of ROS generation in lung lining fluid in response to iron and copper in PM2.5. Spatial variations in long-term average ROS were predicted using a land-use regression model derived from measurements of iron and copper in PM2.5. Data were analyzed using negative binomial regression models adjusting for covariates identified using a directed acyclic graph and accounting for spatial autocorrelation. Measurements and Main Results: A significant positive association was observed between neighborhood-level ROS and COVID-19 incidence (incidence rate ratio = 1.07; 95% confidence interval, 1.01-1.15 per interquartile range ROS). Effect modification by neighborhood-level measures of racialized group membership and socioeconomic status was also identified. Conclusions: Examination of neighborhood characteristics associated with COVID-19 incidence can identify inequalities and generate hypotheses for future studies.


Asunto(s)
Contaminación del Aire/análisis , COVID-19/metabolismo , Modelos Estadísticos , Especies Reactivas de Oxígeno/análisis , COVID-19/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Ontario/epidemiología , SARS-CoV-2
16.
Am J Respir Crit Care Med ; 203(9): 1138-1148, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147059

RESUMEN

Rationale: Current evidence on the relationship between long-term exposure to air pollution and new onset of chronic lung disease is inconclusive.Objectives: To examine associations of incident chronic obstructive pulmonary disease (COPD) and adult-onset asthma with past exposure to fine particulate matter ≤ 2.5 µm in diameter (PM2.5), nitrogen dioxide (NO2), ozone (O3), and the redox-weighted average of NO2 and O3 (Ox) and characterize the concentration-response relationship.Methods: We conducted a population-based cohort study of all Ontarians, aged 35-85 years, from 2001 to 2015. A 3-year moving average of residential exposures to selected pollutants with a 1-year lag were estimated during follow-up. We used Cox proportional hazard models and Aalen additive-hazard models to quantify the pollution-disease associations and characterized the shape of these relationships using newly developed nonlinear risk models.Measurements and Main Results: Among 5.1 million adults, we identified 340,733 and 218,005 incident cases of COPD and asthma, respectively. We found positive associations of COPD with PM2.5 per interquartile-range (IQR) increase of 3.4 µg/m3 (hazard ratio, 1.07; 95% confidence interval, 1.06-1.08), NO2 per IQR increase of 13.9 ppb (1.04; 1.02-1.05), O3 per IQR increase of 6.3 ppb (1.04; 1.03-1.04), and Ox per IQR increase of 4.4 ppb (1.03; 1.03-1.03). By contrast, we did not find strong evidence linking these pollutants to adult-onset asthma. In addition, we quantified that each IQR increase in pollution exposure yielded 3.0 (2.4-3.6), 3.2 (2.0-4.3), 1.9 (1.3-2.5), and 2.3 (1.7-2.9) excess cases of COPD per 100,000 adults for PM2.5, NO2, O3, and Ox, respectively. Furthermore, most pollutant-COPD relationships exhibited supralinear shapes.Conclusions: Air pollution was associated with a higher incidence of COPD but was not associated with a higher incidence of adult-onset asthma.


Asunto(s)
Contaminación del Aire/efectos adversos , Asma/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Asma/diagnóstico , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Ontario , Material Particulado , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Factores de Riesgo , Factores de Tiempo
17.
Environ Sci Technol ; 55(18): 12483-12492, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34498865

RESUMEN

Outdoor ultrafine particles (UFP, <0.1 µm) and black carbon (BC) vary greatly within cities and may have adverse impacts on human health. In this study, we used a hybrid approach to develop new models to estimate within-city spatial variations in outdoor UFP and BC concentrations across Bucaramanga, Colombia. We conducted a mobile monitoring campaign over 20 days in 2019. Regression models were trained on land use data and combined with predictions from convolutional neural networks (CNN) trained to predict UFP and BC concentrations using satellite and street-level images. The combined UFP model (R2 = 0.54) outperformed the CNN (R2 = 0.47) and land use regression (LUR) models (R2 = 0.47) on their own. Similarly, the combined BC model also outperformed the CNN and LUR BC models (R2 = 0.51 vs 0.43 and 0.45, respectively). Spatial variations in model performance were more stable for the CNN and combined models compared to the LUR models, suggesting that the combined approach may be less likely to contribute to differential exposure measurement error in epidemiological studies. In general, our findings demonstrated that satellite and street-level images can be combined with a traditional LUR modeling approach to improve predictions of within-city spatial variations in outdoor UFP and BC concentrations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Carbono , Ciudades , Colombia , Monitoreo del Ambiente , Humanos , Material Particulado/análisis
18.
Environ Sci Technol ; 55(14): 9750-9760, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34241996

RESUMEN

Fine particulate air pollution (PM2.5) is a leading contributor to the overall global burden of disease. Traditionally, outdoor PM2.5 has been characterized using mass concentrations which treat all particles as equally harmful. Oxidative potential (OP) (per µg) and oxidative burden (OB) (per m3) are complementary metrics that estimate the ability of PM2.5 to cause oxidative stress, which is an important mechanism in air pollution health effects. Here, we provide the first national estimates of spatial variations in multiple measures (glutathione, ascorbate, and dithiothreitol depletion) of annual median outdoor PM2.5 OB across Canada. To do this, we combined a large database of ground-level OB measurements collected monthly prospectively across Canada for 2 years (2016-2018) with PM2.5 components estimated using a chemical transport model (GEOS-Chem) and satellite aerosol observations. Our predicted ground-level OB values of all three methods were consistent with ground-level observations (cross-validation R2 = 0.63-0.74). We found that forested regions and urban areas had the highest OB, predicted primarily by black carbon and organic carbon from wildfires and transportation sources. Importantly, the dominant components associated with OB were different than those contributing to PM2.5 mass concentrations (secondary inorganic aerosol); thus, OB metrics may better indicate harmful components and sources on health than the bulk PM2.5 mass, reinforcing that OB estimates can complement the existing PM2.5 data in future national-level epidemiological studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Canadá , Monitoreo del Ambiente , Humanos , Estrés Oxidativo , Material Particulado/análisis
19.
Environ Sci Technol ; 55(6): 3807-3818, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33666410

RESUMEN

Metal components in fine particulate matter (PM2.5) from nontailpipe emissions may play an important role in underlying the adverse respiratory effects of PM2.5. We investigated the associations between long-term exposure to iron (Fe) and copper (Cu) in PM2.5 and their combined impact on reactive oxygen species (ROS) generation in human lungs, and the incidence of asthma, chronic obstructive pulmonary disease (COPD), COPD mortality, pneumonia mortality, and respiratory mortality. We conducted a population-based cohort study of ∼0.8 million adults in Toronto, Canada. Land-use regression models were used to estimate the concentrations of Fe, Cu, and ROS. Outcomes were ascertained using validated health administrative databases. We found positive associations between long-term exposure to Fe, Cu, and ROS and the risks of all five respiratory outcomes. The associations were more robust for COPD, pneumonia mortality, and respiratory mortality than for asthma incidence and COPD mortality. Stronger associations were observed for ROS than for either Fe or Cu. In two-pollutant models, adjustment for nitrogen dioxide somewhat attenuated the associations while adjustment for PM2.5 had little influence. Long-term exposure to Fe and Cu in PM2.5 and estimated ROS concentration in lung fluid was associated with increased incidence of respiratory diseases, suggesting the adverse respiratory effects of nontailpipe emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Respiratorias , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Canadá , Estudios de Cohortes , Cobre/toxicidad , Exposición a Riesgos Ambientales/análisis , Humanos , Hierro , Pulmón , Material Particulado/efectos adversos , Material Particulado/análisis , Especies Reactivas de Oxígeno
20.
Environ Res ; 196: 110389, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33129861

RESUMEN

Reliable estimates of outdoor air pollution concentrations are needed to support global actions to improve public health. We developed a new approach to estimating annual average outdoor nitrogen dioxide (NO2) concentrations using approximately 20,000 ground-level measurements in Flanders, Belgium combined with aerial images and deep neural networks. Our final model explained 79% of the spatial variability in NO2 (root mean square error of 10-fold cross-validation = 3.58 µg/m3) using only images as model inputs. This novel approach offers an alternative means of estimating large-scale spatial variations in ambient air quality and may be particularly useful for regions of the world without detailed emissions data or land use information typically used to estimate outdoor air pollution concentrations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciencia Ciudadana , Aprendizaje Profundo , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Bélgica , Monitoreo del Ambiente , Dióxido de Nitrógeno/análisis , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA