Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(1): 130-148.e17, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38128538

RESUMEN

The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.


Asunto(s)
Embryophyta , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Embryophyta/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Fosforilación , Plantas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Algáceas/metabolismo
2.
Cell ; 180(3): 427-439.e12, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004461

RESUMEN

Cell polarity is fundamental for tissue morphogenesis in multicellular organisms. Plants and animals evolved multicellularity independently, and it is unknown whether their polarity systems are derived from a single-celled ancestor. Planar polarity in animals is conferred by Wnt signaling, an ancient signaling pathway transduced by Dishevelled, which assembles signalosomes by dynamic head-to-tail DIX domain polymerization. In contrast, polarity-determining pathways in plants are elusive. We recently discovered Arabidopsis SOSEKI proteins, which exhibit polar localization throughout development. Here, we identify SOSEKI as ancient polar proteins across land plants. Concentration-dependent polymerization via a bona fide DIX domain allows these to recruit ANGUSTIFOLIA to polar sites, similar to the polymerization-dependent recruitment of signaling effectors by Dishevelled. Cross-kingdom domain swaps reveal functional equivalence of animal and plant DIX domains. We trace DIX domains to unicellular eukaryotes and thus show that DIX-dependent polymerization is an ancient mechanism conserved between kingdoms and central to polarity proteins.


Asunto(s)
Arabidopsis/química , Arabidopsis/citología , Polaridad Celular/fisiología , Células Vegetales/fisiología , Polimerizacion , Dominios Proteicos , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteína Axina/química , Proteína Axina/metabolismo , Bryopsida/química , Bryopsida/citología , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Células COS , Chlorocebus aethiops , Proteínas Dishevelled/metabolismo , Células HEK293 , Humanos , Marchantia/química , Marchantia/citología , Marchantia/genética , Marchantia/crecimiento & desarrollo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Plantas Modificadas Genéticamente , Proteínas Represoras/metabolismo , Vía de Señalización Wnt
3.
Annu Rev Cell Dev Biol ; 32: 47-75, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27576120

RESUMEN

Land plants can grow to tremendous body sizes, yet even the most complex architectures are the result of iterations of the same developmental processes: organ initiation, growth, and pattern formation. A central question in plant biology is how these processes are regulated and coordinated to allow for the formation of ordered, 3D structures. All these elementary processes first occur in early embryogenesis, during which, from a fertilized egg cell, precursors for all major tissues and stem cells are initiated, followed by tissue growth and patterning. Here we discuss recent progress in our understanding of this phase of plant life. We consider the cellular basis for multicellular development in 3D and focus on the genetic regulatory mechanisms that direct specific steps during early embryogenesis.


Asunto(s)
Morfogénesis , Semillas/embriología , Tipificación del Cuerpo , Nicho de Células Madre
4.
Cell ; 156(3): 577-89, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24485461

RESUMEN

Auxin regulates numerous plant developmental processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs), yet the mechanistic basis for generating specificity in auxin response is unknown. Here, we address this question by solving high-resolution crystal structures of the pivotal Arabidopsis developmental regulator ARF5/MONOPTEROS (MP), its divergent paralog ARF1, and a complex of ARF1 and a generic auxin response DNA element (AuxRE). We show that ARF DNA-binding domains also homodimerize to generate cooperative DNA binding, which is critical for in vivo ARF5/MP function. Strikingly, DNA-contacting residues are conserved between ARFs, and we discover that monomers have the same intrinsic specificity. ARF1 and ARF5 homodimers, however, differ in spacing tolerated between binding sites. Our data identify the DNA-binding domain as an ARF dimerization domain, suggest that ARF dimers bind complex sites as molecular calipers with ARF-specific spacing preference, and provide an atomic-scale mechanistic model for specificity in auxin response.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/química , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Alineación de Secuencia
5.
Nat Rev Mol Cell Biol ; 17(1): 30-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26580717

RESUMEN

Vascular tissues in plants are crucial to provide physical support and to transport water, sugars and hormones and other small signalling molecules throughout the plant. Recent genetic and molecular studies have identified interconnections among some of the major signalling networks that regulate plant vascular development. Using Arabidopsis thaliana as a model system, these studies enable the description of vascular development from the earliest tissue specification events during embryogenesis to the differentiation of phloem and xylem tissues. Moreover, we propose a model for how oriented cell divisions give rise to a three-dimensional vascular bundle within the root meristem.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/embriología , Floema/citología , Raíces de Plantas/embriología , Xilema/citología
6.
Nature ; 609(7927): 575-581, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071161

RESUMEN

The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Corriente Citoplasmática , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Mutación , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas de Translocación de Protón/metabolismo
7.
EMBO J ; 42(6): e113018, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36786017

RESUMEN

The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.


Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Filogenia , Ecosistema , Evolución Molecular , Plantas , Arabidopsis/genética
8.
EMBO J ; 42(9): e111885, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36741000

RESUMEN

Cellular condensates can comprise membrane-less ribonucleoprotein assemblies with liquid-like properties. These cellular condensates influence various biological outcomes, but their liquidity hampers their isolation and characterization. Here, we investigated the composition of the condensates known as processing bodies (PBs) in the model plant Arabidopsis thaliana through a proximity-biotinylation proteomics approach. Using in situ protein-protein interaction approaches, genetics and high-resolution dynamic imaging, we show that processing bodies comprise networks that interface with membranes. Surprisingly, the conserved component of PBs, DECAPPING PROTEIN 1 (DCP1), can localize to unique plasma membrane subdomains including cell edges and vertices. We characterized these plasma membrane interfaces and discovered a developmental module that can control cell shape. This module is regulated by DCP1, independently from its role in decapping, and the actin-nucleating SCAR-WAVE complex, whereby the DCP1-SCAR-WAVE interaction confines and enhances actin nucleation. This study reveals an unexpected function for a conserved condensate at unique membrane interfaces.


Asunto(s)
Actinas , Proteínas de Arabidopsis , Arabidopsis , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cuerpos de Procesamiento
9.
Plant Cell ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652687

RESUMEN

The signaling molecule auxin sits at the nexus of plant biology and coordinates essentially all growth and developmental processes in plants. Auxin molecules are transported throughout plant tissues and are capable of evoking highly specific physiological responses in plant cells by inducing various molecular pathways. In many of these pathways, proteolysis plays a crucial role for correct physiological responses. This review provides a chronology of the discovery and characterisation of the auxin receptor, which is a fascinating example of separate research trajectories ultimately converging on the discovery of a core auxin signaling hub which relies on degradation of a family of transcriptional inhibitor proteins - the Aux/IAAs. Beyond describing the "classical" proteolysis-driven auxin response system, we explore more recent examples of the interconnection of proteolytic systems, which target a range of other auxin signaling proteins, and auxin response. By highlighting these emerging concepts, we provide potential future directions to further investigate the role of protein degradation within the framework of auxin response.

10.
Nature ; 599(7884): 273-277, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707283

RESUMEN

Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Protones , Transducción de Señal , Álcalis , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Activación Enzimática , Proteínas F-Box/metabolismo , Concentración de Iones de Hidrógeno , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo
11.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37869985

RESUMEN

Plant external surfaces are often covered by barriers that control the exchange of molecules, protect from pathogens and offer mechanical integrity. A key question is when and how such surface barriers are generated. Post-embryonic surfaces have well-studied barriers, including the cuticle, and it has been previously shown that the late Arabidopsis thaliana embryo is protected by an endosperm-derived sheath deposited onto a primordial cuticle. Here, we show that both cuticle and sheath are preceded by another structure during the earliest stages of embryogenesis. This structure, which we named the embryonic envelope, is tightly wrapped around the embryonic surface but can be physically detached by cell wall digestion. We show that this structure is composed primarily of extensin and arabinogalactan O-glycoproteins and lipids, which appear to form a dense and elastic crosslinked embryonic envelope. The envelope forms in cuticle-deficient mutants and in a mutant that lacks endosperm. This embryo-derived envelope is therefore distinct from previously described cuticle and sheath structures. We propose that it acts as an expandable diffusion barrier, as well as a means to mechanically confine the embryo to maintain its tensegrity during early embryogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Semillas/genética , Endospermo/genética , Difusión , Regulación de la Expresión Génica de las Plantas
12.
Proc Natl Acad Sci U S A ; 120(11): e2219916120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36881630

RESUMEN

The signaling molecule auxin coordinates many growth and development processes in plants, mainly through modulating gene expression. Transcriptional response is mediated by the family of auxin response factors (ARF). Monomers of this family recognize a DNA motif and can homodimerize through their DNA-binding domain (DBD), enabling cooperative binding to an inverted binding site. Most ARFs further contain a C-terminal PB1 domain that is capable of homotypic interactions and mediating interactions with Aux/IAA repressors. Given the dual role of the PB1 domain, and the ability of both DBD and PB1 domain to mediate dimerization, a key question is how these domains contribute to DNA-binding specificity and affinity. So far, ARF-ARF and ARF-DNA interactions have mostly been approached using qualitative methods that do not provide a quantitative and dynamic view on the binding equilibria. Here, we utilize a DNA binding assay based on single-molecule Förster resonance energy transfer (smFRET) to study the affinity and kinetics of the interaction of several Arabidopsis thaliana ARFs with an IR7 auxin-responsive element (AuxRE). We show that both DBD and PB1 domains of AtARF2 contribute toward DNA binding, and we identify ARF dimer stability as a key parameter in defining binding affinity and kinetics across AtARFs. Lastly, we derived an analytical solution for a four-state cyclic model that explains both the kinetics and the affinity of the interaction between AtARF2 and IR7. Our work demonstrates that the affinity of ARFs toward composite DNA response elements is defined by dimerization equilibrium, identifying this as a key element in ARF-mediated transcriptional activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción , Arabidopsis/genética , Sitios de Unión , Ácidos Indolacéticos , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo
13.
Plant Cell ; 34(1): 174-192, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34338785

RESUMEN

Having a sense of direction is a fundamental cellular trait that can determine cell shape, division orientation, or function, and ultimately the formation of a functional, multicellular body. Cells acquire and integrate directional information by establishing discrete subcellular domains along an axis with distinct molecular profiles, a process known as cell polarization. Insight into the principles and mechanisms underlying cell polarity has been propelled by decades of extensive research mostly in yeast and animal models. Our understanding of cell polarity establishment in plants, which lack most of the regulatory molecules identified in other eukaryotes, is more limited, but significant progress has been made in recent years. In this review, we explore how plant cells coordinately establish stable polarity axes aligned with the organ axes, highlighting similarities in the molecular logic used to polarize both plant and animal cells. We propose a classification system for plant cell polarity events and nomenclature guidelines. Finally, we provide a deep phylogenetic analysis of polar proteins and discuss the evolution of polarity machineries in plants.


Asunto(s)
Polaridad Celular , Filogenia , Células Vegetales/fisiología , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/clasificación , Evolución Biológica
14.
Plant Cell ; 34(1): 53-71, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34524464

RESUMEN

The field of plant cell biology has a rich history of discovery, going back to Robert Hooke's discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field.


Asunto(s)
Pared Celular , Citocinesis , Citoesqueleto , Células Vegetales , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Biología Celular
15.
J Exp Bot ; 75(14): 4210-4218, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38400751

RESUMEN

All land plants-the embryophytes-produce multicellular embryos, as do other multicellular organisms, such as brown algae and animals. A unique characteristic of plant embryos is their immobile and confined nature. Their embedding in maternal tissues may offer protection from the environment, but also physically constrains development. Across the different land plants, a huge discrepancy is present between their reproductive structures whilst leading to similarly complex embryos. Therefore, we review the roles that maternal tissues play in the control of embryogenesis across land plants. These nurturing, constraining, and protective roles include both direct and indirect effects. In this review, we explore how the maternal surroundings affect embryogenesis and which chemical and mechanical barriers are in place. We regard these questions through the lens of evolution, and identify key questions for future research.


Asunto(s)
Semillas , Semillas/crecimiento & desarrollo , Embryophyta/crecimiento & desarrollo , Evolución Biológica
16.
Plant Cell Rep ; 43(7): 174, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878164

RESUMEN

KEY MESSAGE: Interactor of WOX2, CDC48A, is crucial for early embryo patterning and shoot meristem stem cell initiation, but is not required for WOX2 protein turnover or subcellular localization. During Arabidopsis embryo patterning, the WUSCHEL HOMEOBOX 2 (WOX2) transcription factor is a major regulator of protoderm and shoot stem cell initiation. Loss of WOX2 function results in aberrant protodermal cell divisions and, redundantly with its paralogs WOX1, WOX3, and WOX5, compromised shoot meristem formation. To elucidate the molecular basis for WOX2 function, we searched for protein interactors by IP-MS/MS from WOX2-overexpression roots displaying reprogramming toward shoot-like cell fates. Here, we report that WOX2 directly interacts with the type II AAA ATPase molecular chaperone CELL DIVISION CYCLE 48A (CDC48A). We confirmed this interaction with bimolecular fluorescence complementation and co-immunoprecipitation and found that both proteins co-localize in the nucleus. We show that CDC48A loss of function results in protoderm and shoot meristem stem cell initiation defects similar to WOX2 loss of function. We also provide evidence that CDC48A promotes WOX2 activity independently of proteolysis or the regulation of nuclear localization, common mechanisms of CDC48A function in other processes. Our results point to a new role of CDC48A in potentiating WOX2 function during early embryo patterning.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ciclo Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Meristema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Meristema/metabolismo , Meristema/genética , Meristema/embriología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Semillas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , ATPasas Asociadas con Actividades Celulares Diversas , Factores de Transcripción
17.
Genes Dev ; 30(20): 2286-2296, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27898393

RESUMEN

Tissue patterning in multicellular organisms is the output of precise spatio-temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormone-sensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Morfogénesis/genética , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/metabolismo
18.
Development ; 147(13)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32554529

RESUMEN

In many flowering plants, asymmetric division of the zygote generates apical and basal cells with different fates. In Arabidopsis thaliana, the apical cell generates the embryo while the basal cell divides anticlinally, leading to a suspensor of six to nine cells that remain extra-embryonic and eventually senesce. In some genetic backgrounds, or upon ablation of the embryo, suspensor cells can undergo periclinal cell divisions and eventually form a second twin embryo. Likewise, embryogenesis can be induced from somatic cells by various genes, but the relationship with suspensor-derived embryos is unclear. Here, we addressed the nature of the suspensor to embryo fate transformation and its genetic triggers. We expressed most known embryogenesis-inducing genes specifically in suspensor cells. We next analyzed morphology and fate-marker expression in embryos in which suspensor division was activated by different triggers to address the developmental paths towards reprogramming. Our results show that reprogramming of Arabidopsis suspensor cells towards embryonic identity is a specific cellular response that is triggered by defined regulators, follows a conserved developmental trajectory and shares similarity to the process of somatic embryogenesis from post-embryonic tissues.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Semillas/genética
19.
Development ; 147(8)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198154

RESUMEN

Development of plant vascular tissues involves tissue identity specification, growth, pattern formation and cell-type differentiation. Although later developmental steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we found that vascular identity was specified in the 16-cell embryo. After a transient precursor state, however, there was no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We found that, although an AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)-dependent auxin response was required, it was not sufficient for tissue specification. We therefore used a large-scale enhanced yeast one-hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of candidate regulators suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, can modulate vascular gene expression by tuning MP output through direct interaction. Our work uncovers components of a gene regulatory network that controls the initial specification of vascular tissue identity.


Asunto(s)
Arabidopsis/embriología , Tipificación del Cuerpo , Haz Vascular de Plantas/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tipificación del Cuerpo/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Haz Vascular de Plantas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Elementos de Respuesta/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Transcripción Genética
20.
Plant Physiol ; 190(1): 85-99, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35904762

RESUMEN

The evolution of transporting tissues was an important innovation in terrestrial plants that allowed them to adapt to almost all nonaquatic environments. These tissues consist of water-conducting cells and food-conducting cells and bridge plant-soil and plant-air interfaces over long distances. The largest group of land plants, representing about 95% of all known plant species, is associated with morphologically complex transporting tissue in plants with a range of additional traits. Therefore, this entire clade was named tracheophytes, or vascular plants. However, some nonvascular plants possess conductive tissues that closely resemble vascular tissue in their organization, structure, and function. Recent molecular studies also point to a highly conserved toolbox of molecular regulators for transporting tissues. Here, we reflect on the distinguishing features of conductive and vascular tissues and their evolutionary history. Rather than sudden emergence of complex, vascular tissues, plant transporting tissues likely evolved gradually, building on pre-existing developmental mechanisms and genetic components. Improved knowledge of the intimate structure and developmental regulation of transporting tissues across the entire taxonomic breadth of extant plant lineages, combined with more comprehensive documentation of the fossil record of transporting tissues, is required for a full understanding of the evolutionary trajectory of transporting tissues.


Asunto(s)
Embryophyta , Evolución Biológica , Embryophyta/genética , Evolución Molecular , Fósiles , Filogenia , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA