Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 615(7952): 517-525, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859545

RESUMEN

Most human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death1. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue2,3. In these poorly attached states, cells adopt rounded morphologies and form small hemispherical plasma membrane protrusions called blebs4-11. Bleb function has been thoroughly investigated in the context of amoeboid migration, but it has been examined far less in other scenarios12. Here we show by three-dimensional imaging and manipulation of cell morphological states that blebbing triggers the formation of plasma membrane-proximal signalling hubs that confer anoikis resistance. Specifically, in melanoma cells, blebbing generates plasma membrane contours that recruit curvature-sensing septin proteins as scaffolds for constitutively active mutant NRAS and effectors. These signalling hubs activate ERK and PI3K-well-established promoters of pro-survival pathways. Inhibition of blebs or septins has little effect on the survival of well-adhered cells, but in detached cells it causes NRAS mislocalization, reduced MAPK and PI3K activity, and ultimately, death. This unveils a morphological requirement for mutant NRAS to operate as an effective oncoprotein. Furthermore, whereas some BRAF-mutated melanoma cells do not rely on this survival pathway in a basal state, inhibition of BRAF and MEK strongly sensitizes them to both bleb and septin inhibition. Moreover, fibroblasts engineered to sustain blebbing acquire the same anoikis resistance as cancer cells even without harbouring oncogenic mutations. Thus, blebs are potent signalling organelles capable of integrating myriad cellular information flows into concerted cellular responses, in this case granting robust anoikis resistance.


Asunto(s)
Anoicis , Carcinogénesis , Extensiones de la Superficie Celular , Supervivencia Celular , Melanoma , Transducción de Señal , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Septinas/metabolismo , Extensiones de la Superficie Celular/química , Extensiones de la Superficie Celular/metabolismo , Carcinogénesis/genética , Adhesión Celular , Quinasas MAP Reguladas por Señal Extracelular , Fibroblastos , Mutación , Forma de la Célula , Imagenología Tridimensional , Quinasas de Proteína Quinasa Activadas por Mitógenos
2.
Nature ; 568(7753): 546-550, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944468

RESUMEN

During metazoan development, immune surveillance and cancer dissemination, cells migrate in complex three-dimensional microenvironments1-3. These spaces are crowded by cells and extracellular matrix, generating mazes with differently sized gaps that are typically smaller than the diameter of the migrating cell4,5. Most mesenchymal and epithelial cells and some-but not all-cancer cells actively generate their migratory path using pericellular tissue proteolysis6. By contrast, amoeboid cells such as leukocytes use non-destructive strategies of locomotion7, raising the question how these extremely fast cells navigate through dense tissues. Here we reveal that leukocytes sample their immediate vicinity for large pore sizes, and are thereby able to choose the path of least resistance. This allows them to circumnavigate local obstacles while effectively following global directional cues such as chemotactic gradients. Pore-size discrimination is facilitated by frontward positioning of the nucleus, which enables the cells to use their bulkiest compartment as a mechanical gauge. Once the nucleus and the closely associated microtubule organizing centre pass the largest pore, cytoplasmic protrusions still lingering in smaller pores are retracted. These retractions are coordinated by dynamic microtubules; when microtubules are disrupted, migrating cells lose coherence and frequently fragment into migratory cytoplasmic pieces. As nuclear positioning in front of the microtubule organizing centre is a typical feature of amoeboid migration, our findings link the fundamental organization of cellular polarity to the strategy of locomotion.


Asunto(s)
Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Polaridad Celular/fisiología , Animales , Línea Celular , Células Cultivadas , Quimiotaxis/fisiología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Porosidad
3.
Nat Methods ; 18(7): 829-834, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34183831

RESUMEN

We introduce a cost-effective and easily implementable scan unit that converts any camera-based microscope with optical sectioning capability into a multi-angle projection imaging system. Projection imaging reduces data overhead and accelerates imaging by a factor of >100, while also allowing users to readily view biological phenomena of interest from multiple perspectives on the fly. By rapidly interrogating the sample from just two perspectives, our method also enables real-time stereoscopic imaging and three-dimensional particle localization. We demonstrate projection imaging with spinning disk confocal, lattice light-sheet, multidirectional illumination light-sheet and oblique plane microscopes on specimens that range from organelles in single cells to the vasculature of a zebrafish embryo. Furthermore, we leverage our projection method to rapidly image cancer cell morphodynamics and calcium signaling in cultured neurons at rates up to 119 Hz as well as to simultaneously image orthogonal views of a beating embryonic zebrafish heart.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Animales , Colon/citología , Embrión no Mamífero/citología , Femenino , Corazón/diagnóstico por imagen , Corazón/embriología , Humanos , Imagenología Tridimensional , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , Ratas Sprague-Dawley , Esferoides Celulares/patología , Pez Cebra/embriología
4.
Nat Methods ; 16(3): 235-238, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30804550

RESUMEN

We introduce field synthesis, a theorem and method that can be used to synthesize any scanned or dithered light sheet, including those used in lattice light-sheet microscopy (LLSM), from an incoherent superposition of one-dimensional intensity distributions. Compared to LLSM, this user-friendly and modular approach offers a simplified optical design, higher light throughput and simultaneous multicolor illumination. Further, field synthesis achieves lower rates of photobleaching than light sheets generated by lateral beam scanning.


Asunto(s)
Luz , Microscopía Fluorescente/métodos , Animales , Línea Celular Tumoral , Membrana Celular , Humanos , Microscopía Fluorescente/instrumentación , Fotoblanqueo
5.
Nat Methods ; 16(10): 1037-1044, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501548

RESUMEN

Rapid developments in live-cell three-dimensional (3D) microscopy enable imaging of cell morphology and signaling with unprecedented detail. However, tools to systematically measure and visualize the intricate relationships between intracellular signaling, cytoskeletal organization and downstream cell morphological outputs do not exist. Here, we introduce u-shape3D, a computer graphics and machine-learning pipeline to probe molecular mechanisms underlying 3D cell morphogenesis and to test the intriguing possibility that morphogenesis itself affects intracellular signaling. We demonstrate a generic morphological motif detector that automatically finds lamellipodia, filopodia, blebs and other motifs. Combining motif detection with molecular localization, we measure the differential association of PIP2 and KrasV12 with blebs. Both signals associate with bleb edges, as expected for membrane-localized proteins, but only PIP2 is enhanced on blebs. This indicates that subcellular signaling processes are differentially modulated by local morphological motifs. Overall, our computational workflow enables the objective, 3D analysis of the coupling of cell shape and signaling.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía/métodos , Fracciones Subcelulares/metabolismo , Línea Celular Tumoral , Forma de la Célula , Gráficos por Computador , Humanos , Aprendizaje Automático , Transducción de Señal
6.
BMC Cancer ; 19(1): 502, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138163

RESUMEN

BACKGROUND: Every biological experiment requires a choice of throughput balanced against physiological relevance. Most primary drug screens neglect critical parameters such as microenvironmental conditions, cell-cell heterogeneity, and specific readouts of cell fate for the sake of throughput. METHODS: Here we describe a methodology to quantify proliferation and viability of single cells in 3D culture conditions by leveraging automated microscopy and image analysis to facilitate reliable and high-throughput measurements. We detail experimental conditions that can be adjusted to increase either throughput or robustness of the assay, and we provide a stand alone image analysis program for users who wish to implement this 3D drug screening assay in high throughput. RESULTS: We demonstrate this approach by evaluating a combination of RAF and MEK inhibitors on melanoma cells, showing that cells cultured in 3D collagen-based matrices are more sensitive than cells grown in 2D culture, and that cell proliferation is much more sensitive than cell viability. We also find that cells grown in 3D cultured spheroids exhibit equivalent sensitivity to single cells grown in 3D collagen, suggesting that for the case of melanoma, a 3D single cell model may be equally effective for drug identification as 3D spheroids models. The single cell resolution of this approach enables stratification of heterogeneous populations of cells into differentially responsive subtypes upon drug treatment, which we demonstrate by determining the effect of RAK/MEK inhibition on melanoma cells co-cultured with fibroblasts. Furthermore, we show that spheroids grown from single cells exhibit dramatic heterogeneity to drug response, suggesting that heritable drug resistance can arise stochastically in single cells but be retained by subsequent generations. CONCLUSION: In summary, image-based analysis renders cell fate detection robust, sensitive, and high-throughput, enabling cell fate evaluation of single cells in more complex microenvironmental conditions.


Asunto(s)
Fibroblastos/citología , Procesamiento de Imagen Asistido por Computador/métodos , Melanoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Esferoides Celulares/citología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Melanoma/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Análisis de la Célula Individual , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Microambiente Tumoral , Quinasas raf/antagonistas & inhibidores
7.
Biophys J ; 110(6): 1456-65, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028654

RESUMEN

In subcellular light-sheet fluorescence microscopy (LSFM) of adherent cells, glass substrates are advantageously rotated relative to the excitation and emission light paths to avoid glass-induced optical aberrations. Because cells are spread across the sample volume, three-dimensional imaging requires a light-sheet with a long propagation length, or rapid sample scanning. However, the former degrades axial resolution and/or optical sectioning, while the latter mechanically perturbs sensitive biological specimens on pliant biomimetic substrates (e.g., collagen and basement membrane). Here, we use aberration-free remote focusing to diagonally sweep a narrow light-sheet along the sample surface, enabling multicolor imaging with high spatiotemporal resolution. Further, we implement a dithered Gaussian lattice to minimize sample-induced illumination heterogeneities, significantly improving signal uniformity. Compared with mechanical sample scanning, we drastically reduce sample oscillations, allowing us to achieve volumetric imaging at speeds of up to 3.5 Hz for thousands of Z-stacks. We demonstrate the optical performance with live-cell imaging of microtubule and actin cytoskeletal dynamics, phosphoinositide signaling, clathrin-mediated endocytosis, polarized blebbing, and endocytic vesicle sorting. We achieve three-dimensional particle tracking of clathrin-associated structures with velocities up to 4.5 µm/s in a dense intracellular environment, and show that such dynamics cannot be recovered reliably at lower volumetric image acquisition rates using experimental data, numerical simulations, and theoretical modeling.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía/métodos , Citoesqueleto de Actina/metabolismo , Adhesión Celular , Línea Celular , Endosomas/metabolismo , Espacio Extracelular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Transducción de Señal
8.
Biophys J ; 108(12): 2807-15, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26083920

RESUMEN

The use of propagation invariant Bessel beams has enabled high-resolution subcellular light sheet fluorescence microscopy. However, the energy within the concentric side lobe structure of Bessel beams increases significantly with propagation length, generating unwanted out-of-focus fluorescence that enforces practical limits on the imaging field of view size. Here, we present a light sheet fluorescence microscope that achieves 390 nm isotropic resolution and high optical sectioning strength (i.e., out-of-focus blur is strongly suppressed) over large field of views, without the need for structured illumination or deconvolution-based postprocessing. We demonstrate simultaneous dual-color, high-contrast, and high-dynamic-range time-lapse imaging of migrating cells in complex three-dimensional microenvironments, three-dimensional tracking of clathrin-coated pits, and long-term imaging spanning >10 h and encompassing >2600 time points.


Asunto(s)
Imagen Óptica/métodos , Epitelio Pigmentado de la Retina/ultraestructura , Imagen de Lapso de Tiempo/métodos , Técnicas de Cultivo de Célula , Movimiento Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Óptica/instrumentación , Imagen de Lapso de Tiempo/instrumentación
9.
Biophys J ; 109(12): 2492-2500, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26682808

RESUMEN

We find how collective migration emerges from mechanical information transfer between cells. Local alignment of cell velocity and mechanical stress orientation-a phenomenon dubbed "plithotaxis"-plays a crucial role in inducing coordinated migration. Leader cells at the monolayer edge better align velocity and stress to migrate faster toward the open space. Local seeds of enhanced motion then generate stress on neighboring cells to guide their migration. Stress-induced motion propagates into the monolayer as well as along the monolayer boundary to generate increasingly larger clusters of coordinately migrating cells that move faster with enhanced alignment of velocity and stress. Together, our analysis provides a model of long-range mechanical communication between cells, in which plithotaxis translates local mechanical fluctuations into globally collective migration of entire tissues.


Asunto(s)
Movimiento Celular , Estrés Mecánico , Fenómenos Biomecánicos , Células Epiteliales/citología , Espacio Extracelular/metabolismo , Humanos , Imagen Molecular
10.
Biophys J ; 107(11): 2492-8, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25468328

RESUMEN

Experimental perturbations are commonly used to establish causal relationships between the molecular components of a pathway and their cellular functions; however, this approach suffers inherent limitations. Especially in pathways with a significant level of nonlinearity and redundancy among components, such perturbations induce compensatory responses that obscure the actual function of the targeted component in the unperturbed pathway. A complementary approach uses constitutive fluctuations in component activities to identify the hierarchy of information flow through pathways. Here, we review the motivation for using perturbation-free approaches and highlight recent advances made in using perturbation-free fluctuation analysis as a means to establish causality among cellular events.


Asunto(s)
Fenómenos Biofísicos , Células/metabolismo , Causalidad , Simulación por Computador , Regulación de la Expresión Génica , Transducción de Señal
11.
Dev Cell ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38870943

RESUMEN

In crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move. To examine how they do so, we visualized amoeboid human melanoma cells in dense environments and found that they carve tunnels via bleb-driven degradation of extracellular matrix components without the need for proteolytic degradation. Interactions between adhesions and collagen at the cell front induce a signaling cascade that promotes bleb enlargement via branched actin polymerization. Large blebs abrade collagen, creating feedback between extracellular matrix structure, cell morphology, and polarization that enables both path generation and persistent movement.

12.
Clin Pharmacol Ther ; 115(3): 422-439, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38093583

RESUMEN

Subcutaneous (s.c.) administration of monoclonal antibodies (mAbs) can reduce treatment burden for patients and healthcare systems compared with intravenous (i.v.) infusion through shorter administration times, made possible by convenient, patient-centric devices. A deeper understanding of clinical pharmacology principles related to efficacy and safety of s.c.-administered mAbs over the past decade has streamlined s.c. product development. This review presents learnings from key constituents of the s.c. mAb development pathway, including pharmacology, administration variables, immunogenicity, and delivery devices. Restricted mAb transportation through the hypodermis explains their incomplete absorption at a relatively slow rate (pharmacokinetic (PK)) and may impact mAb-cellular interactions and/or onset and magnitude of physiological responses (pharmacodynamic). Injection volumes, formulation, rate and site of injection, and needle attributes may affect PKs and the occurrence/severity of adverse events like injection-site reactions or pain, with important consequences for treatment adherence. A review of immunogenicity data for numerous compounds reveals that incidence of anti-drug antibodies (ADAs) is generally comparable across i.v. and s.c. routes, and complementary factors including response magnitude (ADA titer), persistence over time, and neutralizing antibody presence are needed to assess clinical impact. Finally, four case studies showcase how s.c. biologics have been clinically developed: (i) by implementation of i.v./s.c. bridging strategies to streamline PD-1/PD-L1 inhibitor development, (ii) through co-development with i.v. presentations for anti-severe acute respiratory syndrome-coronavirus 2 antibodies to support rapid deployment of both formulations, (iii) as the lead route for bispecific T cell engagers (BTCEs) to mitigate BTCE-mediated cytokine release syndrome, and (iv) for pediatric patients in the case of dupilumab.


Asunto(s)
Anticuerpos Monoclonales , Tejido Subcutáneo , Humanos , Niño , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Neutralizantes , Administración Intravenosa
13.
Cell Rep Methods ; 3(12): 100655, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38042149

RESUMEN

We describe u-track3D, a software package that extends the versatile u-track framework established in 2D to address the specific challenges of 3D particle tracking. First, we present the performance of the new package in quantifying a variety of intracellular dynamics imaged by multiple 3D microcopy platforms and on the standard 3D test dataset of the particle tracking challenge. These analyses indicate that u-track3D presents a tracking solution that is competitive to both conventional and deep-learning-based approaches. We then present the concept of dynamic region of interest (dynROI), which allows an experimenter to interact with dynamic 3D processes in 2D views amenable to visual inspection. Third, we present an estimator of trackability that automatically defines a score for every trajectory, thereby overcoming the challenges of trajectory validation by visual inspection. With these combined strategies, u-track3D provides a complete framework for unbiased studies of molecular processes in complex volumetric sequences.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Imagenología Tridimensional/métodos , Examen Físico
14.
Biophys J ; 103(6): 1379-89, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22995511

RESUMEN

Integrins are transmembrane adhesion receptors that bind extracellular matrix (ECM) proteins and signal bidirectionally to regulate cell adhesion and migration. In many cell types, integrins cluster at cell-ECM contacts to create the foundation for adhesion complexes that transfer force between the cell and the ECM. Even though the temporal and spatial regulation of these integrin clusters is essential for cell migration, how cells regulate their formation is currently unknown. It has been shown that integrin cluster formation is independent of actin stress fiber formation, but requires active (high-affinity) integrins, phosphoinositol-4,5-bisphosphate (PIP2), talin, and immobile ECM ligand. Based on these observations, we propose a minimal model for initial formation of integrin clusters, facilitated by localized activation and binding of integrins to ECM ligands as a result of biochemical feedback between integrin binding and integrin activation. By employing a diffusion-reaction framework for modeling these reactions, we show how spatial organization of bound integrins into clusters may be achieved by a local source of active integrins, namely protein complexes formed on the cytoplasmic tails of bound integrins. Further, we show how such a mechanism can turn small local increases in the concentration of active talin or active integrin into integrin clusters via positive feedback. Our results suggest that the formation of integrin clusters by the proposed mechanism depends on the relationships between production and diffusion of integrin-activating species, and that changes to the relative rates of these processes may affect the resulting properties of integrin clusters.


Asunto(s)
Retroalimentación Fisiológica , Integrinas/metabolismo , Modelos Biológicos , Difusión , Cinética , Unión Proteica
15.
Biophys J ; 100(8): 1893-901, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21504725

RESUMEN

Cell movement biased by a chemical gradient, or chemotaxis, coordinates the recruitment of cells and collective migration of cell populations. During wound healing, chemotaxis of fibroblasts is stimulated by platelet-derived growth factor (PDGF) and certain other chemoattractants. Whereas the immediate PDGF gradient sensing response has been characterized previously at the level of phosphoinositide 3-kinase (PI3K) signaling, the sensitivity of the response at the level of cell migration bias has not yet been studied quantitatively. In this work, we used live-cell total internal reflection fluorescence microscopy to monitor PI3K signaling dynamics and cell movements for extended periods. We show that persistent and properly aligned (i.e., high-fidelity) fibroblast migration does indeed correlate with polarized PI3K signaling; accordingly, this behavior is seen only under conditions of high gradient steepness (>10% across a typical cell length of 50 µm) and a certain range of PDGF concentrations. Under suboptimal conditions, cells execute a random or biased random walk, but nonetheless move in a predictable fashion according to the changing pattern of PI3K signaling. Inhibition of PI3K during chemotaxis is accompanied by loss of both cell-substratum contact and morphological polarity, but after a recovery period, PI3K-inhibited fibroblasts often regain the ability to orient toward the PDGF gradient.


Asunto(s)
Quimiotaxis , Fibroblastos/citología , Fibroblastos/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Alginatos/química , Animales , Extensiones de la Superficie Celular/efectos de los fármacos , Extensiones de la Superficie Celular/metabolismo , Quimiotaxis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Ratones , Microesferas , Células 3T3 NIH , Factor de Crecimiento Derivado de Plaquetas/química , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Procesos Estocásticos
16.
PLoS Comput Biol ; 6(2): e1000688, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20195494

RESUMEN

Productive cell migration requires the spatiotemporal coordination of cell adhesion, membrane protrusion, and actomyosin-mediated contraction. Integrins, engaged by the extracellular matrix (ECM), nucleate the formation of adhesive contacts at the cell's leading edge(s), and maturation of nascent adhesions to form stable focal adhesions constitutes a functional switch between protrusive and contractile activities. To shed additional light on the coupling between integrin-mediated adhesion and membrane protrusion, we have formulated a quantitative model of leading edge dynamics combining mechanistic and phenomenological elements and studied its features through classical bifurcation analysis and stochastic simulation. The model describes in mathematical terms the feedback loops driving, on the one hand, Rac-mediated membrane protrusion and rapid turnover of nascent adhesions, and on the other, myosin-dependent maturation of adhesions that inhibit protrusion at high ECM density. Our results show that the qualitative behavior of the model is most sensitive to parameters characterizing the influence of stable adhesions and myosin. The major predictions of the model, which we subsequently confirmed, are that persistent leading edge protrusion is optimal at an intermediate ECM density, whereas depletion of myosin IIA relieves the repression of protrusion at higher ECM density.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Matriz Extracelular/metabolismo , Modelos Biológicos , Procesos Estocásticos , Animales , Células CHO , Extensiones de la Superficie Celular/metabolismo , Biología Computacional/métodos , Simulación por Computador , Cricetinae , Cricetulus , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrinas/metabolismo , Miosinas/metabolismo , Paxillin/genética , Paxillin/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/metabolismo
17.
Methods Mol Biol ; 2265: 155-171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33704713

RESUMEN

Researchers often aim to incorporate microenvironmental variables such as the dimensionality and composition of the extracellular matrix into their cell-based assays. A technical challenge created by introduction of these variables is quantification of single-cell measurements and control of environmental reproducibility. Here, we detail a methodology to quantify viability and proliferation of melanoma cells in 3D collagen-based culture platforms by automated microscopy and 3D image analysis to yield robust, high-throughput results of single-cell responses to drug treatment.


Asunto(s)
Antineoplásicos/farmacología , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/efectos de los fármacos , Procesamiento de Imagen Asistido por Computador/métodos , Melanoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Análisis de la Célula Individual/métodos , Supervivencia Celular/efectos de los fármacos , Colágeno , Imidazoles/farmacología , Melanoma/patología , Oximas/farmacología , Piridonas/farmacología , Pirimidinonas/farmacología , Esferoides Celulares
18.
Cell Syst ; 12(7): 733-747.e6, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34077708

RESUMEN

Deep learning has emerged as the technique of choice for identifying hidden patterns in cell imaging data but is often criticized as "black box." Here, we employ a generative neural network in combination with supervised machine learning to classify patient-derived melanoma xenografts as "efficient" or "inefficient" metastatic, validate predictions regarding melanoma cell lines with unknown metastatic efficiency in mouse xenografts, and use the network to generate in silico cell images that amplify the critical predictive cell properties. These exaggerated images unveiled pseudopodial extensions and increased light scattering as hallmark properties of metastatic cells. We validated this interpretation using live cells spontaneously transitioning between states indicative of low and high metastatic efficiency. This study illustrates how the application of artificial intelligence can support the identification of cellular properties that are predictive of complex phenotypes and integrated cell functions but are too subtle to be identified in the raw imagery by a human expert. A record of this paper's transparent peer review process is included in the supplemental information. VIDEO ABSTRACT.


Asunto(s)
Aprendizaje Profundo , Melanoma , Animales , Inteligencia Artificial , Humanos , Ratones , Redes Neurales de la Computación
19.
Biophys J ; 98(1): 67-75, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20085720

RESUMEN

It has long been appreciated that spatiotemporal dynamics of cell migration are under the control of intracellular signaling pathways, which are mediated by adhesion receptors and other transducers of extracellular cues. Further, there is ample evidence that aspects of cell migration are stochastic: how else could it exhibit directional persistence over timescales much longer than typical signal transduction processes, punctuated by abrupt changes in direction? Yet the mechanisms by which signaling processes affect those behaviors remain unclear. We have developed analytical methods for relating parallel live-cell microscopy measurements of cell migration dynamics to the intracellular signaling processes that govern them. In this analysis of phosphoinositide 3-kinase signaling in randomly migrating fibroblasts, we observe that hot spots of intense signaling coincide with localized cell protrusion and endure with characteristic lifetimes that correspond to those of cell migration persistence. We further show that distant hot spots are dynamically and stochastically coupled. These results are indicative of a mechanism by which changes in a cell's direction of migration are determined by a fragile balance of relatively rapid intracellular signaling processes.


Asunto(s)
Movimiento Celular/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Animales , Simulación por Computador , Ratones , Células 3T3 NIH , Fosfatidilinositol 3-Quinasas
20.
Dev Cell ; 55(6): 723-736.e8, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33308479

RESUMEN

Despite the well-established role of actin polymerization as a driving mechanism for cell protrusion, upregulated actin polymerization alone does not initiate protrusions. Using a combination of theoretical modeling and quantitative live-cell imaging experiments, we show that local depletion of actin-membrane links is needed for protrusion initiation. Specifically, we show that the actin-membrane linker ezrin is depleted prior to protrusion onset and that perturbation of ezrin's affinity for actin modulates protrusion frequency and efficiency. We also show how actin-membrane release works in concert with actin polymerization, leading to a comprehensive model for actin-driven shape changes. Actin-membrane release plays a similar role in protrusions driven by intracellular pressure. Thus, our findings suggest that protrusion initiation might be governed by a universal regulatory mechanism, whereas the mechanism of force generation determines the shape and expansion properties of the protrusion.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/ultraestructura , Extensiones de la Superficie Celular/ultraestructura , Células Cultivadas , Citoesqueleto/metabolismo , Femenino , Humanos , Masculino , Ratones , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA