Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.118
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 56(1): 180-192.e11, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36563676

RESUMEN

The reinvigoration of anti-tumor T cells in response to immune checkpoint blockade (ICB) therapy is well established. Whether and how ICB therapy manipulates antibody-mediated immune response in cancer environments, however, remains elusive. Using tandem mass spectrometric analysis of modification of immunoglobulin G (IgG) from hepatoma tissues, we identified a role of ICB therapy in catalyzing IgG sialylation in the Fc region. Effector T cells triggered sialylation of IgG via an interferon (IFN)-γ-ST6Gal-I-dependent pathway. DC-SIGN+ macrophages represented the main target cells of sialylated IgG. Upon interacting with sialylated IgG, DC-SIGN stimulated Raf-1-elicited elevation of ATF3, which inactivated cGAS-STING pathway and eliminated subsequent type-I-IFN-triggered antitumorigenic immunity. Although enhanced IgG sialylation in tumors predicted improved therapeutic outcomes for patients receiving ICB therapy, impeding IgG sialylation augmented antitumorigenic T cell immunity after ICB therapy. Thus, targeting antibody-based negative feedback action of ICB therapy has potential for improving efficacy of cancer immunotherapies.


Asunto(s)
Carcinoma Hepatocelular , Interferón Tipo I , Neoplasias Hepáticas , Humanos , Inmunoglobulina G , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoterapia/métodos
2.
Cell ; 162(4): 808-22, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26255771

RESUMEN

Dendritic spines are postsynaptic compartments of excitatory synapses that undergo dynamic changes during development, including rapid spinogenesis in early postnatal life and significant pruning during adolescence. Spine pruning defects have been implicated in developmental neurological disorders such as autism, yet much remains to be uncovered regarding its molecular mechanism. Here, we show that spine pruning and maturation in the mouse somatosensory cortex are coordinated via the cadherin/catenin cell adhesion complex and bidrectionally regulated by sensory experience. We further demonstrate that locally enhancing cadherin/catenin-dependent adhesion or photo-stimulating a contacting channelrhodopsin-expressing axon stabilized the manipulated spine and eliminated its neighbors, an effect requiring cadherin/catenin-dependent adhesion. Importantly, we show that differential cadherin/catenin-dependent adhesion between neighboring spines biased spine fate in vivo. These results suggest that activity-induced inter-spine competition for ß-catenin provides specificity for concurrent spine maturation and elimination and thus is critical for the molecular control of spine pruning during neural circuit refinement.


Asunto(s)
Cadherinas/metabolismo , Cateninas/metabolismo , Espinas Dendríticas/metabolismo , Corteza Somatosensorial/citología , Animales , Trastorno del Espectro Autista/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cadherinas/genética , Cateninas/genética , Ratones , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Corteza Somatosensorial/metabolismo , Vibrisas/lesiones
3.
EMBO J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261664

RESUMEN

In preparation for a potential pregnancy, the endometrium of the uterus changes into a temporary structure called the decidua. Senescent decidual stromal cells (DSCs) are enriched in the decidua during decidualization, but the underlying mechanisms of this process remain unclear. Here, we performed single-cell RNA transcriptomics on ESCs and DSCs and found that cell senescence during decidualization is accompanied by increased levels of the branched-chain amino acid (BCAA) transporter SLC3A2. Depletion of leucine, one of the branched-chain amino acids, from cultured media decreased senescence, while high leucine diet resulted in increased senescence and high rates of embryo loss in mice. BCAAs induced senescence in DSCs via the p38 MAPK pathway. In contrast, TNFSF14+ decidual natural killer (dNK) cells were found to inhibit DSC senescence by interacting with its ligand TNFRSF14. As in mice fed high-leucine diets, both mice with NK cell depletion and Tnfrsf14-deficient mice with excessive uterine senescence experienced adverse pregnancy outcomes. Further, we found excessive uterine senescence, SLC3A2-mediated BCAA intake, and insufficient TNFRSF14 expression in the decidua of patients with recurrent spontaneous abortion. In summary, this study suggests that dNK cells maintain senescence homeostasis of DSCs via TNFSF14/TNFRSF14, providing a potential therapeutic strategy to prevent DSC senescence-associated spontaneous abortion.

4.
Nature ; 610(7932): 532-539, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36163289

RESUMEN

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) detect pathogen effectors to trigger immune responses1. Indirect recognition of a pathogen effector by the dicotyledonous Arabidopsis thaliana coiled-coil domain containing NLR (CNL) ZAR1 induces the formation of a large hetero-oligomeric protein complex, termed the ZAR1 resistosome, which functions as a calcium channel required for ZAR1-mediated immunity2-4. Whether the resistosome and channel activities are conserved among plant CNLs remains unknown. Here we report the cryo-electron microscopy structure of the wheat CNL Sr355 in complex with the effector AvrSr356 of the wheat stem rust pathogen. Direct effector binding to the leucine-rich repeats of Sr35 results in the formation of a pentameric Sr35-AvrSr35 complex, which we term the Sr35 resistosome. Wheat Sr35 and Arabidopsis ZAR1 resistosomes bear striking structural similarities, including an arginine cluster in the leucine-rich repeats domain not previously recognized as conserved, which co-occurs and forms intramolecular interactions with the 'EDVID' motif in the coiled-coil domain. Electrophysiological measurements show that the Sr35 resistosome exhibits non-selective cation channel activity. These structural insights allowed us to generate new variants of closely related wheat and barley orphan NLRs that recognize AvrSr35. Our data support the evolutionary conservation of CNL resistosomes in plants and demonstrate proof of principle for structure-based engineering of NLRs for crop improvement.


Asunto(s)
Canales de Calcio , Microscopía por Crioelectrón , Proteínas NLR , Proteínas de Plantas , Receptores Inmunológicos , Triticum , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arginina , Canales de Calcio/química , Canales de Calcio/inmunología , Canales de Calcio/metabolismo , Cationes/metabolismo , Leucina , Proteínas NLR/química , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Receptores Inmunológicos/química , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Triticum/inmunología , Triticum/metabolismo , Secuencias de Aminoácidos , Secuencia Conservada , Electrofisiología
5.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38124211

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and stereotyped behaviors. Although major advances in basic research on autism have been achieved in the past decade, and behavioral interventions can mitigate the difficulties that individuals with autism experience, little is known about the many fundamental issues of the interventions, and no specific medication has demonstrated efficiency for the core symptoms of ASD. Intermittent hypobaric hypoxia (IHH) is characterized by repeated exposure to lowered atmospheric pressure and oxygen levels, which triggers multiple physiological adaptations in the body. Here, using two mouse models of ASD, male Shank3B -/- and Fmr1 -/y mice, we found that IHH training at an altitude of 5,000 m for 4 h per day, for 14 consecutive days, ameliorated autistic-like behaviors. Moreover, IHH training enhanced hypoxia inducible factor (HIF) 1α in the dorsal raphe nucleus (DRN) and activated the DRN serotonergic neurons. Infusion of cobalt chloride into the DRN, to mimic IHH in increasing HIF1α expression or genetically knockdown PHD2 to upregulate HIF1α expression in the DRN serotonergic neurons, alleviated autistic-like behaviors in Shank3B -/- mice. In contrast, downregulation of HIF1α in DRN serotonergic neurons induced compulsive behaviors. Furthermore, upregulating HIF1α in DRN serotonergic neurons increased the firing rates of these neurons, whereas downregulation of HIF1α in DRN serotonergic neurons decreased their firing rates. These findings suggest that IHH activated DRN serotonergic neurons via upregulation of HIF1α, and thus ameliorated autistic-like phenotypes, providing a novel therapeutic option for ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Masculino , Animales , Trastorno Autístico/genética , Trastorno Autístico/terapia , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/terapia , Núcleo Dorsal del Rafe , Neuronas Serotoninérgicas/fisiología , Hipoxia , Fenotipo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
6.
FASEB J ; 38(8): e23613, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661048

RESUMEN

The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.


Asunto(s)
Tejido Adiposo , Macrófagos , PPAR gamma , Rosiglitazona , Trasplante Autólogo , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Macrófagos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Rosiglitazona/farmacología , Masculino , Diferenciación Celular , Adipogénesis , Adipocitos/metabolismo , Ratones , Ratas
7.
EMBO Rep ; 24(10): e57101, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37621232

RESUMEN

The NLR family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in the pathogenesis of a wide variety of human diseases. So far, drugs directly and specifically targeting the NLRP3 inflammasome are not available for clinical use since the safety and efficacy of new compounds are often unclear. A promising approach is thus to identify NLRP3 inhibitors from existing drugs that are already in clinical use. Here, we show that mefloquine, a well-known antimalarial drug, is a highly selective and potent NLRP3 inhibitor by screening a FDA-approved drug library. Mechanistically, mefloquine directly binds to the NLRP3 NACHT and LRR domains to prevent NLRP3 inflammasome activation. More importantly, mefloquine treatment attenuates the symptoms of lipopolysaccharide-induced systemic inflammation and Parkinson's disease-like neural damage in mice. Our findings identify mefloquine as a potential therapeutic agent for NLRP3-driven diseases and migth expand its clinical use considerably.

8.
Nucleic Acids Res ; 51(18): 9552-9566, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37697433

RESUMEN

Intrinsic DNA properties including bending play a crucial role in diverse biological systems. A recent advance in a high-throughput technology called loop-seq makes it possible to determine the bendability of hundred thousand 50-bp DNA duplexes in one experiment. However, it's still challenging to assess base-resolution sequence bendability in large genomes such as human, which requires thousands of such experiments. Here, we introduce 'BendNet'-a deep neural network to predict the intrinsic DNA bending at base-resolution by using loop-seq results in yeast as training data. BendNet can predict the DNA bendability of any given sequence from different species with high accuracy. To explore the utility of BendNet, we applied it to the human genome and observed DNA bendability is associated with chromatin features and disease risk regions involving transcription/enhancer regulation, DNA replication, transcription factor binding and extrachromosomal circular DNA generation. These findings expand our understanding on DNA mechanics and its association with transcription regulation in mammals. Lastly, we built a comprehensive resource of genomic DNA bendability profiles for 307 species by applying BendNet, and provided an online tool to assess the bendability of user-specified DNA sequences (http://www.dnabendnet.com/).

9.
Proc Natl Acad Sci U S A ; 119(12): e2111283119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35286204

RESUMEN

SignificanceThe adult Drosophila mushroom body (MB) is one of the most extensively studied neural circuits. However, how its circuit organization is established during development is unclear. In this study, we provide an initial characterization of the assembly process of the extrinsic neurons (dopaminergic neurons and MB output neurons) that target the vertical MB lobes. We probe the cellular mechanisms guiding the neurite targeting of these extrinsic neurons and demonstrate that Semaphorin 1a is required in several MB output neurons for their dendritic innervations to three specific MB lobe zones. Our study reveals several intriguing molecular and cellular principles governing assembly of the MB circuit.


Asunto(s)
Cuerpos Pedunculados , Semaforinas , Animales , Neuronas Dopaminérgicas , Drosophila/fisiología , Cuerpos Pedunculados/fisiología , Neuritas , Semaforinas/genética
10.
J Cell Mol Med ; 28(1): e18022, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37929660

RESUMEN

Long noncoding RNAs (lncRNAs) play critical roles in the carcinogenesis and progression of cancers. However, the role and mechanism of the pseudogene lncRNA PIN1P1 in gastric carcinoma remain unclear. The expression and effects of lncRNA PIN1P1 in gastric cancer were investigated. The transcriptional regulation of CREB1 on PIN1P1 was determined by ChIP and luciferase assays. The mechanistic model of PIN1P1 in gastric cancer was further explored by RNA pull-down, RIP and western blot analysis. PIN1P1 was overexpressed in gastric cancer tissues, and upregulated PIN1P1 predicted poor prognosis in patients. CREB1 was directly combined with the promoter region of PIN1P1 to promote the transcription of PIN1P1. CREB1-mediated enhanced proliferation, migration and invasion could be partially reversed by downregulation of PIN1P1. Overexpressed PIN1P1 promoted the proliferation, migration and invasion of gastric cancer cells, whereas decreased PIN1P1 showed the opposite effects. PIN1P1 directly interacted with YBX1 and promoted YBX1 protein expression, leading to upregulation of PIN1, in which E2F1 may be involved. Silencing of YBX1 during PIN1P1 overexpression could partially rescue PIN1 upregulation. PIN1, the parental gene of PIN1P1, was elevated in gastric cancer tissues, and its upregulation was correlated with poor patient outcomes. PIN1 facilitated gastric cancer cell proliferation, migration and invasion. To sum up, CREB1-activated PIN1P1 could promote gastric cancer progression through YBX1 and upregulating PIN1, suggesting that it is a potential target for gastric cancer.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo
11.
BMC Genomics ; 25(1): 645, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943081

RESUMEN

BACKGROUND: Wenchang chickens are one of the most popular local chicken breeds in the Chinese chicken industry. However, the low feed efficiency is the main shortcoming of this breed. Therefore, there is a need to find a more precise breeding method to improve the feed efficiency of Wenchang chickens. In this study, we explored important candidate genes and variants for feed efficiency and growth traits through genome-wide association study (GWAS) analysis. RESULTS: Estimates of genomic heritability for growth and feed efficiency traits, including residual feed intake (RFI) of 0.05, average daily food intake (ADFI) of 0.21, average daily weight gain (ADG) of 0.24, body weight (BW) at 87, 95, 104, 113 days of age (BW87, BW95, BW104 and BW113) ranged from 0.30 to 0.44. Important candidate genes related to feed efficiency and growth traits were identified, such as PLCE1, LAP3, MED28, QDPR, LDB2 and SEL1L3 genes. CONCLUSION: The results identified important candidate genes for feed efficiency and growth traits in Wenchang chickens and provide a theoretical basis for the development of new molecular breeding technology.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Fenotipo , Alimentación Animal , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
12.
J Am Chem Soc ; 146(25): 16982-16989, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870424

RESUMEN

Catalytic asymmetric dearomatization (CADA) reactions have evolved into an efficient strategy for accessing chiral polycyclic and spirocyclic scaffolds from readily available planar aromatics. Despite the significant developments, the CADA reaction of naphthalenes remains underdeveloped. Herein, we report a Gd(III)-catalyzed asymmetric dearomatization reaction of naphthalene with a chiral PyBox ligand via visible-light-enabled [4 + 2] cycloaddition. This reaction features application of a chiral Gd/PyBox complex, which regulates the reactivity and selectivity simultaneously, in excited-state catalysis. A wide range of functional groups is compatible with this protocol, giving the highly enantioenriched bridged polycycles in excellent yields (up to 96%) and selectivity (up to >20:1 chemoselectivity, >20:1 dr, >99% ee). The synthetic utility is demonstrated by a 2 mmol scale reaction, removal of directing group, and diversifications of products. Preliminary mechanistic experiments are performed to elucidate the reaction mechanism.

13.
Clin Immunol ; 258: 109802, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866784

RESUMEN

Oxidative stress dually affected cancer progression, while its effect on glioblastomas remained unclear. Herein, we clustered the multicenter glioblastoma cohorts based on the oxidative-stress-responsive genes (OSS) expression. We found that cluster 2 with high OSS levels suffered a worse prognosis. Functional analyses and immune-related analyses results exhibited that M2-like pro-tumoral macrophages and neutrophils were enriched in cluster 2, while Natural killer cells' infiltration was decreased. The increased M2-like pro-tumoral macrophages in cluster 2 was confirmed by immunofluorescence. An integrated single-cell analysis validated the malignant features of cluster 2 neoplastic cells and discovered their crosstalk with M2-like pro-tumoral macrophages. Moreover, we observed that SOD3 knockdown might decrease the M2-like pro-tumoral transformation of macrophage in vitro and in vivo. Comprehensively, we revealed oxidative stress' prognostic and immunosuppressive potential in glioblastoma and discovered SOD3's potential role in regulating macrophage M2-like pro-tumoral transformation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Macrófagos , Terapia de Inmunosupresión , Estrés Oxidativo , Microambiente Tumoral
14.
Eur J Immunol ; 53(12): e2350446, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37742135

RESUMEN

Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Inmunoterapia , Inmunidad Innata , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Inositol Polifosfato 5-Fosfatasas/metabolismo
15.
Biochem Biophys Res Commun ; 691: 149322, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38039833

RESUMEN

BACKGROUND: Bupleurum (Bup), is a traditional effective medicine to treat colds and fevers in clinics. Multiple studies have demonstrated that Bup exhibites various biological activities, including cardioprotective effects, anti-inflammatory, anticancer, antipyretic, antimicrobial, and antiviral effects, etc. Currently, the effects of Bup on cardiac electrophysiology have not been reported yet. METHODS: Electrocardiogram recordings were used to investigate the effects of Bup on aconitine-induced arrhythmias. Patch-clamp techniques were used to explore the effects of Bup on APs and ion currents. RESULTS: Bup reduced the incidence of ventricular fibrillation (VF) and delayed the onset time of ventricular tachycardia (VT) in mice. Additionally, Bup (40 mg/mL) suppressed DADs induced by high-Ca2+ and shortened action potential duration at 50 % completion of repolarization (APD50) and action potential duration at 90 % completion of repolarization (APD90) to 60.89 % ± 8.40 % and 68.94 % ± 3.24 % of the control, respectively. Moreover, Bup inhibited L-type calcium currents (ICa.L) in a dose-dependent manner, with an IC50 value of 25.36 mg/mL. Furthermore, Bup affected the gated kinetics of L-type calcium channels by slowing down steady-state activation, accelerating the steady-state inactivation, and delaying the inactivation-recovery process. However, Bup had no effects on the Transient sodium current (INa.T), ATX II-increased late sodium current (INa.L), transient outward current (Ito), delayed rectifier potassium current (IK), or inward rectifier potassium current (IK1). CONCLUSION: Bup is an antiarrhythmic agent that may exert its antiarrhythmic effects by inhibiting L-type calcium channels.


Asunto(s)
Bupleurum , Canales de Calcio Tipo L , Ratones , Animales , Bupleurum/metabolismo , Miocitos Cardíacos/metabolismo , Antiarrítmicos/efectos adversos , Arritmias Cardíacas , Sodio/metabolismo , Potasio/farmacología , Potenciales de Acción
16.
Drug Metab Rev ; : 1-14, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872275

RESUMEN

Osteosarcoma (OS) is a prevalent malignancy among adolescents, commonly manifesting during childhood and adolescence. It exhibits a high degree of malignancy, propensity for metastasis, rapid progression, and poses challenges in clinical management. Chemotherapy represents an efficacious therapeutic modality for OS treatment. However, chemotherapy resistance of OS is a major problem in clinical treatment. In order to treat OS effectively, it is particularly important to explore the mechanism of chemotherapy resistance in OS.The Pregnane X receptor (PXR) is a nuclear receptor primarily involved in the metabolism, transport, and elimination of xenobiotics, including chemotherapeutic agents. PXR involves three stages of drug metabolism: stage I: drug metabolism enzymes; stage II: drug binding enzyme; stage III: drug transporter.PXR has been confirmed to be involved in the process of chemotherapy resistance in malignant tumors. The expression of PXR is increased in OS, which may be related to drug resistance of OS. Therefore, wereviewed in detail the role of PXR in chemotherapy drug resistance in OS.

17.
Cancer Immunol Immunother ; 73(7): 121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714579

RESUMEN

Major histocompatibility complex (MHC) could serve as a potential biomarker for tumor immunotherapy, however, it is not yet known whether MHC could distinguish potential beneficiaries. Single-cell RNA sequencing datasets derived from patients with immunotherapy were collected to elucidate the association between MHC and immunotherapy response. A novel MHCsig was developed and validated using large-scale pan-cancer data, including The Cancer Genome Atlas and immunotherapy cohorts. The therapeutic value of MHCsig was further explored using 17 CRISPR/Cas9 datasets. MHC-related genes were associated with drug resistance and MHCsig was significantly and positively associated with immunotherapy response and total mutational burden. Remarkably, MHCsig significantly enriched 6% top-ranked genes, which were potential therapeutic targets. Moreover, we generated Hub-MHCsig, which was associated with survival and disease-special survival of pan-cancer, especially low-grade glioma. This result was also confirmed in cell lines and in our own clinical cohort. Later low-grade glioma-related Hub-MHCsig was established and the regulatory network was constructed. We provided conclusive clinical evidence regarding the association between MHCsig and immunotherapy response. We developed MHCsig, which could effectively predict the benefits of immunotherapy for multiple tumors. Further exploration of MHCsig revealed some potential therapeutic targets and regulatory networks.


Asunto(s)
Inmunoterapia , Aprendizaje Automático , Complejo Mayor de Histocompatibilidad , Neoplasias , Análisis de la Célula Individual , Humanos , Inmunoterapia/métodos , Análisis de la Célula Individual/métodos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/inmunología , Complejo Mayor de Histocompatibilidad/genética , Análisis de Secuencia de ARN/métodos , Biomarcadores de Tumor/genética , Pronóstico
18.
BMC Plant Biol ; 24(1): 316, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654195

RESUMEN

BACKGROUND: Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important to mine the genes associated with salt tolerance traits. RESULTS: Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015. The results were associated with 740,754 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using three-variance-component multi-locus random-SNP-effect mixed linear model (3VmrMLM). As a result, eight salt tolerance genes (GmCHX1, GsPRX9, Gm5PTase8, GmWRKY, GmCHX20a, GmNHX1, GmSK1, and GmLEA2-1) near 179 significant and 79 suggested QTNs and two salt tolerance genes (GmWRKY49 and GmSK1) near 45 significant and 14 suggested QEIs were associated with salt tolerance index traits in previous studies. Six candidate genes and three gene-by-environment interactions (GEIs) were predicted to be associated with these index traits. Analysis of four salt tolerance related traits under control and salt treatments revealed six genes associated with salt tolerance (GmHDA13, GmPHO1, GmERF5, GmNAC06, GmbZIP132, and GmHsp90s) around 166 QEIs were verified in previous studies. Five candidate GEIs were confirmed to be associated with salt stress by at least one haplotype analysis. The elite molecular modules of seven candidate genes with selection signs were extracted from wild soybean, and these genes could be applied to soybean molecular breeding. Two of these genes, Glyma06g04840 and Glyma07g18150, were confirmed by qRT-PCR and are expected to be key players in responding to salt stress. CONCLUSIONS: Around the QTNs and QEIs identified in this study, 16 known genes, 6 candidate genes, and 8 candidate GEIs were found to be associated with soybean salt tolerance, of which Glyma07g18150 was further confirmed by qRT-PCR.


Asunto(s)
Interacción Gen-Ambiente , Genes de Plantas , Glycine max , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Tolerancia a la Sal , Glycine max/genética , Glycine max/fisiología , Tolerancia a la Sal/genética , Sitios de Carácter Cuantitativo/genética , Fenotipo
19.
J Antimicrob Chemother ; 79(5): 1069-1080, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526879

RESUMEN

OBJECTIVES: The emergence and expansion of carbapenem-resistant Klebsiella pneumoniae infections is a concern due to the lack of 'first-line' antibiotic treatment options. The ceftazidime/avibactam is an important clinical treatment for carbapenem-resistant K. pneumoniae infections but there is an increasing number of cases of treatment failure and drug resistance. Therefore, a potential solution is combination therapies that result in synergistic activity against K. pneumoniae carbapenemase: producing K. pneumoniae (KPC-Kp) isolates and preventing the emergence of KPC mutants resistant to ceftazidime/avibactam are needed in lieu of novel antibiotics. METHODS: To evaluate their synergistic activity, antibiotic combinations were tested against 26 KPC-Kp strains. Antibiotic resistance profiles, molecular characteristics and virulence genes were investigated by susceptibility testing and whole-genome sequencing. Antibiotic synergy was evaluated by in vitro chequerboard experiments, time-killing curves and dose-response assays. The mouse thigh model was used to confirm antibiotic combination activities in vivo. Additionally, antibiotic combinations were evaluated for their ability to prevent the emergence of ceftazidime/avibactam resistant mutations of blaKPC. RESULTS: The combination of ceftazidime/avibactam plus meropenem showed remarkable synergistic activity against 26 strains and restored susceptibility to both the partnering antibiotics. The significant therapeutic effect of ceftazidime/avibactam combined with meropenem was also confirmed in the mouse model and bacterial loads in the thigh muscle of the combination groups were significantly reduced. Furthermore, ceftazidime/avibactam plus meropenem showed significant activity in preventing the occurrence of resistance mutations. CONCLUSIONS: Our results indicated that the combination of ceftazidime/avibactam plus meropenem offers viable therapeutic alternatives in treating serious infections due to KPC-Kp.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Proteínas Bacterianas , Ceftazidima , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sinergismo Farmacológico , Infecciones por Klebsiella , Klebsiella pneumoniae , Meropenem , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Animales , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Meropenem/farmacología , Meropenem/administración & dosificación , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Femenino , Secuenciación Completa del Genoma , Quimioterapia Combinada , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/genética
20.
Mol Hum Reprod ; 30(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265252

RESUMEN

O-linked ß-N-acetylglucosamine (O-GlcNAc) modification exists widely in cells, playing a crucial role in the regulation of important biological processes such as transcription, translation, metabolism, and the cell cycle. O-GlcNAc modification is an inducible reversible dynamic protein post-translational modification, which regulates complex cellular activities through transient glycosylation and deglycosylation. O-GlcNAc glycosylation is specifically regulated by O-GlcNAc glycosyltransferase (O-GlcNAc transferase, OGT) and O-GlcNAc glycoside hydrolase (O-GlcNAcase). However, the mechanisms underlying the effects of O-GlcNAc modification on the female reproductive system, especially oocyte quality, remain unclear. Here, we found that after OGT was inhibited, porcine oocytes failed to extrude the first polar body and exhibited abnormal actin and microtubule assembly. Meanwhile, the mitochondrial dynamics and function were also disrupted after inhibition of OGT function, resulting in the occurrence of oxidative stress and autophagy. Collectively, these results inform our understanding of the importance of the glycosylation process for oocyte maturation, especially for the maturation quality of porcine oocytes, and the alteration of O-GlcNAc in oocytes to regulate cellular events deserves further investigation.


Asunto(s)
Dinámicas Mitocondriales , Procesamiento Proteico-Postraduccional , Femenino , Animales , Porcinos , Oocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA