Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(15): 2885-2899.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35841888

RESUMEN

Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.


Asunto(s)
Regulación de la Expresión Génica , Ribosomas , Genoma Humano/genética , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , Proteínas/metabolismo , ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
2.
Genome Res ; 34(4): 530-538, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38719470

RESUMEN

The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, within both annotated protein-coding and noncoding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term ribosome decision graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the latter "translons." Nondeterministic events, such as initiation, reinitiation, selenocysteine insertion, or ribosomal frameshifting, are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions and for analyzing genetic variation and quantitative genome-wide data on translation for characterization of regulatory modulators of translation.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero , Ribosomas , Ribosomas/metabolismo , Ribosomas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Sistemas de Lectura Abierta , Eucariontes/genética
3.
Am J Hum Genet ; 110(3): 409, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868202

RESUMEN

This article is based on the address given by the author at the 2022 meeting of the American Society of Human Genetics (ASHG) in Los Angeles, California. The video of the original address can be found at the ASHG website.

4.
Nature ; 581(7809): 459-464, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461653

RESUMEN

Naturally occurring human genetic variants that are predicted to inactivate protein-coding genes provide an in vivo model of human gene inactivation that complements knockout studies in cells and model organisms. Here we report three key findings regarding the assessment of candidate drug targets using human loss-of-function variants. First, even essential genes, in which loss-of-function variants are not tolerated, can be highly successful as targets of inhibitory drugs. Second, in most genes, loss-of-function variants are sufficiently rare that genotype-based ascertainment of homozygous or compound heterozygous 'knockout' humans will await sample sizes that are approximately 1,000 times those presently available, unless recruitment focuses on consanguineous individuals. Third, automated variant annotation and filtering are powerful, but manual curation remains crucial for removing artefacts, and is a prerequisite for recall-by-genotype efforts. Our results provide a roadmap for human knockout studies and should guide the interpretation of loss-of-function variants in drug development.


Asunto(s)
Genes Esenciales/efectos de los fármacos , Genes Esenciales/genética , Mutación con Pérdida de Función/genética , Terapia Molecular Dirigida , Artefactos , Automatización , Consanguinidad , Exones/genética , Mutación con Ganancia de Función/genética , Frecuencia de los Genes , Técnicas de Silenciamiento del Gen , Heterocigoto , Homocigoto , Humanos , Proteína Huntingtina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedades Neurodegenerativas/genética , Proteínas Priónicas/genética , Reproducibilidad de los Resultados , Tamaño de la Muestra , Proteínas tau/genética
5.
Nature ; 581(7809): 434-443, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461654

RESUMEN

Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.


Asunto(s)
Exoma/genética , Genes Esenciales/genética , Variación Genética/genética , Genoma Humano/genética , Adulto , Encéfalo/metabolismo , Enfermedades Cardiovasculares/genética , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Mutación con Pérdida de Función/genética , Masculino , Tasa de Mutación , Proproteína Convertasa 9/genética , ARN Mensajero/genética , Reproducibilidad de los Resultados , Secuenciación del Exoma , Secuenciación Completa del Genoma
6.
Am J Hum Genet ; 109(2): 210-222, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065709

RESUMEN

Variable levels of gene expression between tissues complicates the use of RNA sequencing of patient biosamples to delineate the impact of genomic variants. Here, we describe a gene- and tissue-specific metric to inform the feasibility of RNA sequencing. This overcomes limitations of using expression values alone as a metric to predict RNA-sequencing utility. We have derived a metric, minimum required sequencing depth (MRSD), that estimates the depth of sequencing required from RNA sequencing to achieve user-specified sequencing coverage of a gene, transcript, or group of genes. We applied MRSD across four human biosamples: whole blood, lymphoblastoid cell lines (LCLs), skeletal muscle, and cultured fibroblasts. MRSD has high precision (90.1%-98.2%) and overcomes transcript region-specific sequencing biases. Applying MRSD scoring to established disease gene panels shows that fibroblasts, of these four biosamples, are the optimum source of RNA for 63.1% of gene panels. Using this approach, up to 67.8% of the variants of uncertain significance in ClinVar that are predicted to impact splicing could be assayed by RNA sequencing in at least one of the biosamples. We demonstrate the utility and benefits of MRSD as a metric to inform functional assessment of splicing aberrations, in particular in the context of Mendelian genetic disorders to improve diagnostic yield.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Empalme del ARN , ARN Mensajero/genética , Análisis de Secuencia de ARN/estadística & datos numéricos , Programas Informáticos , Linfocitos B/metabolismo , Linfocitos B/patología , Células Sanguíneas/metabolismo , Células Sanguíneas/patología , Línea Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Variación Genética , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , ARN Mensajero/metabolismo , Proyectos de Investigación , Secuenciación del Exoma/estadística & datos numéricos
7.
Am J Hum Genet ; 108(6): 1083-1094, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34022131

RESUMEN

Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.


Asunto(s)
Regiones no Traducidas 5' , Discapacidades del Desarrollo/etiología , Predisposición Genética a la Enfermedad , Mutación con Pérdida de Función , Niño , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/patología , Humanos , Factores de Transcripción MEF2/genética , Secuenciación del Exoma
8.
Genet Med ; 26(2): 101029, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37982373

RESUMEN

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Asunto(s)
Pruebas Genéticas , Variación Genética , Humanos , Alelos , Bases de Datos Genéticas
9.
Eur Heart J ; 44(48): 5146-5158, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37431535

RESUMEN

AIMS: Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity that is partly explained by the diversity of genetic variants contributing to disease. Accurate interpretation of these variants constitutes a major challenge for diagnosis and implementing precision medicine, especially in understudied populations. The aim is to define the genetic architecture of HCM in North African cohorts with high consanguinity using ancestry-matched cases and controls. METHODS AND RESULTS: Prospective Egyptian patients (n = 514) and controls (n = 400) underwent clinical phenotyping and genetic testing. Rare variants in 13 validated HCM genes were classified according to standard clinical guidelines and compared with a prospective HCM cohort of majority European ancestry (n = 684). A higher prevalence of homozygous variants was observed in Egyptian patients (4.1% vs. 0.1%, P = 2 × 10-7), with variants in the minor HCM genes MYL2, MYL3, and CSRP3 more likely to present in homozygosity than the major genes, suggesting these variants are less penetrant in heterozygosity. Biallelic variants in the recessive HCM gene TRIM63 were detected in 2.1% of patients (five-fold greater than European patients), highlighting the importance of recessive inheritance in consanguineous populations. Finally, rare variants in Egyptian HCM patients were less likely to be classified as (likely) pathogenic compared with Europeans (40.8% vs. 61.6%, P = 1.6 × 10-5) due to the underrepresentation of Middle Eastern populations in current reference resources. This proportion increased to 53.3% after incorporating methods that leverage new ancestry-matched controls presented here. CONCLUSION: Studying consanguineous populations reveals novel insights with relevance to genetic testing and our understanding of the genetic architecture of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Etnicidad , Humanos , Consanguinidad , Estudios Prospectivos , Pruebas Genéticas , Cardiomiopatía Hipertrófica/diagnóstico , Mutación
10.
Bioinformatics ; 37(8): 1171-1173, 2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-32926138

RESUMEN

SUMMARY: Current tools to annotate the predicted effect of genetic variants are heavily biased towards protein-coding sequence. Variants outside of these regions may have a large impact on protein expression and/or structure and can lead to disease, but this effect can be challenging to predict. Consequently, these variants are poorly annotated using standard tools. We have developed a plugin to the Ensembl Variant Effect Predictor, the UTRannotator, that annotates variants in 5'untranslated regions (5'UTR) that create or disrupt upstream open reading frames. We investigate the utility of this tool using the ClinVar database, providing an annotation for 31.9% of all 5'UTR (likely) pathogenic variants, and highlighting 31 variants of uncertain significance as candidates for further follow-up. We will continue to update the UTRannotator as we gain new knowledge on the impact of variants in UTRs. AVAILABILITY AND IMPLEMENTATION: UTRannotator is freely available on Github: https://github.com/ImperialCardioGenetics/UTRannotator. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Regiones no Traducidas 5' , Programas Informáticos , Regiones no Traducidas 5'/genética , Humanos , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética
11.
Genet Med ; 24(1): 41-50, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906457

RESUMEN

PURPOSE: The weight of the evidence to attach to observation of a novel rare missense variant in SDHB or SDHD in individuals with the rare neuroendocrine tumors, pheochromocytomas and paragangliomas (PCC/PGL), is uncertain. METHODS: We compared the frequency of SDHB and SDHD very rare missense variants (VRMVs) in 6328 and 5847 cases of PCC/PGL, respectively, with that of population controls to generate a pan-gene VRMV likelihood ratio (LR). Via windowing analysis, we measured regional enrichments of VRMVs to calculate the domain-specific VRMV-LR (DS-VRMV-LR). We also calculated subphenotypic LRs for variant pathogenicity for various clinical, histologic, and molecular features. RESULTS: We estimated the pan-gene VRMV-LR to be 76.2 (54.8-105.9) for SDHB and 14.8 (8.7-25.0) for SDHD. Clustering analysis revealed an SDHB enriched region (ɑɑ 177-260, P = .001) for which the DS-VRMV-LR was 127.2 (64.9-249.4) and an SDHD enriched region (ɑɑ 70-114, P = .000003) for which the DS-VRMV-LR was 33.9 (14.8-77.8). Subphenotypic LRs exceeded 6 for invasive disease (SDHB), head-and-neck disease (SDHD), multiple tumors (SDHD), family history of PCC/PGL, loss of SDHB staining on immunohistochemistry, and succinate-to-fumarate ratio >97 (SDHB, SDHD). CONCLUSION: Using methodology generalizable to other gene-phenotype dyads, the LRs relating to rarity and phenotypic specificity for a single observation in PCC/PGL of a SDHB/SDHD VRMV can afford substantial evidence toward pathogenicity.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Succinato Deshidrogenasa , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patología , Mutación de Línea Germinal , Humanos , Fenotipo , Succinato Deshidrogenasa/genética , Virulencia
15.
Circulation ; 141(5): 387-398, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31983221

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) is genetically heterogeneous, with >100 purported disease genes tested in clinical laboratories. However, many genes were originally identified based on candidate-gene studies that did not adequately account for background population variation. Here we define the frequency of rare variation in 2538 patients with DCM across protein-coding regions of 56 commonly tested genes and compare this to both 912 confirmed healthy controls and a reference population of 60 706 individuals to identify clinically interpretable genes robustly associated with dominant monogenic DCM. METHODS: We used the TruSight Cardio sequencing panel to evaluate the burden of rare variants in 56 putative DCM genes in 1040 patients with DCM and 912 healthy volunteers processed with identical sequencing and bioinformatics pipelines. We further aggregated data from 1498 patients with DCM sequenced in diagnostic laboratories and the Exome Aggregation Consortium database for replication and meta-analysis. RESULTS: Truncating variants in TTN and DSP were associated with DCM in all comparisons. Variants in MYH7, LMNA, BAG3, TNNT2, TNNC1, PLN, ACTC1, NEXN, TPM1, and VCL were significantly enriched in specific patient subsets, with the last 2 genes potentially contributing primarily to early-onset forms of DCM. Overall, rare variants in these 12 genes potentially explained 17% of cases in the outpatient clinic cohort representing a broad range of adult patients with DCM and 26% of cases in the diagnostic referral cohort enriched in familial and early-onset DCM. Although the absence of a significant excess in other genes cannot preclude a limited role in disease, such genes have limited diagnostic value because novel variants will be uninterpretable and their diagnostic yield is minimal. CONCLUSIONS: In the largest sequenced DCM cohort yet described, we observe robust disease association with 12 genes, highlighting their importance in DCM and translating into high interpretability in diagnostic testing. The other genes analyzed here will need to be rigorously evaluated in ongoing curation efforts to determine their validity as Mendelian DCM genes but have limited value in diagnostic testing in DCM at present. This data will contribute to community gene curation efforts and will reduce erroneous and inconclusive findings in diagnostic testing.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Cardiomiopatía Dilatada/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Proteínas Adaptadoras Transductoras de Señales/genética , Adolescente , Adulto , Cardiomiopatía Dilatada/diagnóstico , Exoma/genética , Femenino , Heterogeneidad Genética , Humanos , Masculino , Adulto Joven
16.
Genet Med ; 23(1): 69-79, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33046849

RESUMEN

PURPOSE: Accurate discrimination of benign and pathogenic rare variation remains a priority for clinical genome interpretation. State-of-the-art machine learning variant prioritization tools are imprecise and ignore important parameters defining gene-disease relationships, e.g., distinct consequences of gain-of-function versus loss-of-function variants. We hypothesized that incorporating disease-specific information would improve tool performance. METHODS: We developed a disease-specific variant classifier, CardioBoost, that estimates the probability of pathogenicity for rare missense variants in inherited cardiomyopathies and arrhythmias. We assessed CardioBoost's ability to discriminate known pathogenic from benign variants, prioritize disease-associated variants, and stratify patient outcomes. RESULTS: CardioBoost has high global discrimination accuracy (precision recall area under the curve [AUC] 0.91 for cardiomyopathies; 0.96 for arrhythmias), outperforming existing tools (4-24% improvement). CardioBoost obtains excellent accuracy (cardiomyopathies 90.2%; arrhythmias 91.9%) for variants classified with >90% confidence, and increases the proportion of variants classified with high confidence more than twofold compared with existing tools. Variants classified as disease-causing are associated with both disease status and clinical severity, including a 21% increased risk (95% confidence interval [CI] 11-29%) of severe adverse outcomes by age 60 in patients with hypertrophic cardiomyopathy. CONCLUSIONS: A disease-specific variant classifier outperforms state-of-the-art genome-wide tools for rare missense variants in inherited cardiac conditions ( https://www.cardiodb.org/cardioboost/ ), highlighting broad opportunities for improved pathogenicity prediction through disease specificity.


Asunto(s)
Cardiomiopatías , Mutación Missense , Algoritmos , Área Bajo la Curva , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Humanos , Persona de Mediana Edad , Mutación Missense/genética , Virulencia
17.
Genet Med ; 23(1): 47-58, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32893267

RESUMEN

PURPOSE: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. METHODS: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. RESULTS: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10-18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10-13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. CONCLUSION: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.


Asunto(s)
Síndrome de Brugada , Síndrome de QT Prolongado , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/genética , Síndrome de Brugada/genética , Pruebas Genéticas , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/epidemiología , Síndrome de QT Prolongado/genética , Mutación , Regulación de la Población
18.
Circulation ; 140(1): 31-41, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-30987448

RESUMEN

BACKGROUND: Cancer therapy-induced cardiomyopathy (CCM) is associated with cumulative drug exposures and preexisting cardiovascular disorders. These parameters incompletely account for substantial interindividual susceptibility to CCM. We hypothesized that rare variants in cardiomyopathy genes contribute to CCM. METHODS: We studied 213 patients with CCM from 3 cohorts: retrospectively recruited adults with diverse cancers (n=99), prospectively phenotyped adults with breast cancer (n=73), and prospectively phenotyped children with acute myeloid leukemia (n=41). Cardiomyopathy genes, including 9 prespecified genes, were sequenced. The prevalence of rare variants was compared between CCM cohorts and The Cancer Genome Atlas participants (n=2053), healthy volunteers (n=445), and an ancestry-matched reference population. Clinical characteristics and outcomes were assessed and stratified by genotypes. A prevalent CCM genotype was modeled in anthracycline-treated mice. RESULTS: CCM was diagnosed 0.4 to 9 years after chemotherapy; 90% of these patients received anthracyclines. Adult patients with CCM had cardiovascular risk factors similar to the US population. Among 9 prioritized genes, patients with CCM had more rare protein-altering variants than comparative cohorts ( P≤1.98e-04). Titin-truncating variants (TTNtvs) predominated, occurring in 7.5% of patients with CCM versus 1.1% of The Cancer Genome Atlas participants ( P=7.36e-08), 0.7% of healthy volunteers ( P=3.42e-06), and 0.6% of the reference population ( P=5.87e-14). Adult patients who had CCM with TTNtvs experienced more heart failure and atrial fibrillation ( P=0.003) and impaired myocardial recovery ( P=0.03) than those without. Consistent with human data, anthracycline-treated TTNtv mice and isolated TTNtv cardiomyocytes showed sustained contractile dysfunction unlike wild-type ( P=0.0004 and P<0.002, respectively). CONCLUSIONS: Unrecognized rare variants in cardiomyopathy-associated genes, particularly TTNtvs, increased the risk for CCM in children and adults, and adverse cardiac events in adults. Genotype, along with cumulative chemotherapy dosage and traditional cardiovascular risk factors, improves the identification of patients who have cancer at highest risk for CCM. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifiers: NCT01173341; AAML1031; NCT01371981.


Asunto(s)
Antineoplásicos/efectos adversos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/genética , Variación Genética/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Adulto , Anciano , Animales , Cardiomiopatías/epidemiología , Estudios de Cohortes , Femenino , Variación Genética/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neoplasias/epidemiología , Estudios Prospectivos , Estudios Retrospectivos
19.
Lancet ; 393(10166): 61-73, 2019 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-30429050

RESUMEN

BACKGROUND: Patients with dilated cardiomyopathy whose symptoms and cardiac function have recovered often ask whether their medications can be stopped. The safety of withdrawing treatment in this situation is unknown. METHODS: We did an open-label, pilot, randomised trial to examine the effect of phased withdrawal of heart failure medications in patients with previous dilated cardiomyopathy who were now asymptomatic, whose left ventricular ejection fraction (LVEF) had improved from less than 40% to 50% or greater, whose left ventricular end-diastolic volume (LVEDV) had normalised, and who had an N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) concentration less than 250 ng/L. Patients were recruited from a network of hospitals in the UK, assessed at one centre (Royal Brompton and Harefield NHS Foundation Trust, London, UK), and randomly assigned (1:1) to phased withdrawal or continuation of treatment. After 6 months, patients in the continued treatment group had treatment withdrawn by the same method. The primary endpoint was a relapse of dilated cardiomyopathy within 6 months, defined by a reduction in LVEF of more than 10% and to less than 50%, an increase in LVEDV by more than 10% and to higher than the normal range, a two-fold rise in NT-pro-BNP concentration and to more than 400 ng/L, or clinical evidence of heart failure, at which point treatments were re-established. The primary analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT02859311. FINDINGS: Between April 21, 2016, and Aug 22, 2017, 51 patients were enrolled. 25 were randomly assigned to the treatment withdrawal group and 26 to continue treatment. Over the first 6 months, 11 (44%) patients randomly assigned to treatment withdrawal met the primary endpoint of relapse compared with none of those assigned to continue treatment (Kaplan-Meier estimate of event rate 45·7% [95% CI 28·5-67·2]; p=0·0001). After 6 months, 25 (96%) of 26 patients assigned initially to continue treatment attempted its withdrawal. During the following 6 months, nine patients met the primary endpoint of relapse (Kaplan-Meier estimate of event rate 36·0% [95% CI 20·6-57·8]). No deaths were reported in either group and three serious adverse events were reported in the treatment withdrawal group: hospital admissions for non-cardiac chest pain, sepsis, and an elective procedure. INTERPRETATION: Many patients deemed to have recovered from dilated cardiomyopathy will relapse following treatment withdrawal. Until robust predictors of relapse are defined, treatment should continue indefinitely. FUNDING: British Heart Foundation, Alexander Jansons Foundation, Royal Brompton Hospital and Imperial College London, Imperial College Biomedical Research Centre, Wellcome Trust, and Rosetrees Trust.


Asunto(s)
Cardiomiopatía Dilatada/tratamiento farmacológico , Fármacos Cardiovasculares/administración & dosificación , Insuficiencia Cardíaca/tratamiento farmacológico , Privación de Tratamiento , Biomarcadores/sangre , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/fisiopatología , Fármacos Cardiovasculares/farmacología , Esquema de Medicación , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Proyectos Piloto , Pronóstico , Recurrencia , Inducción de Remisión , Volumen Sistólico/efectos de los fármacos , Resultado del Tratamiento , Función Ventricular Izquierda/efectos de los fármacos
20.
Nature ; 512(7512): 87-90, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25079323

RESUMEN

The cis-regulatory effects responsible for cancer development have not been as extensively studied as the perturbations of the protein coding genome in tumorigenesis. To better characterize colorectal cancer (CRC) development we conducted an RNA-sequencing experiment of 103 matched tumour and normal colon mucosa samples from Danish CRC patients, 90 of which were germline-genotyped. By investigating allele-specific expression (ASE) we show that the germline genotypes remain important determinants of allelic gene expression in tumours. Using the changes in ASE in matched pairs of samples we discover 71 genes with excess of somatic cis-regulatory effects in CRC, suggesting a cancer driver role. We correlate genotypes and gene expression to identify expression quantitative trait loci (eQTLs) and find 1,693 and 948 eQTLs in normal samples and tumours, respectively. We estimate that 36% of the tumour eQTLs are exclusive to CRC and show that this specificity is partially driven by increased expression of specific transcription factors and changes in methylation patterns. We show that tumour-specific eQTLs are more enriched for low CRC genome-wide association study (GWAS) P values than shared eQTLs, which suggests that some of the GWAS variants are tumour specific regulatory variants. Importantly, tumour-specific eQTL genes also accumulate more somatic mutations when compared to the shared eQTL genes, raising the possibility that they constitute germline-derived cancer regulatory drivers. Collectively the integration of genome and the transcriptome reveals a substantial number of putative somatic and germline cis-regulatory cancer changes that may have a role in tumorigenesis.


Asunto(s)
Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Alelos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/patología , Metilación de ADN , Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Estudio de Asociación del Genoma Completo , Genotipo , Mutación de Línea Germinal/genética , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA