Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Genes Dev ; 26(6): 594-602, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22426535

RESUMEN

Bidirectionally moving DNA replication forks merge at termination sites composed of accidental or programmed DNA-protein barriers. If merging fails, then regions of unreplicated DNA can result in the breakage of DNA during mitosis, which in turn can give rise to genome instability. Despite its importance, little is known about the mechanisms that promote the final stages of fork merging in eukaryotes. Here we show that the Pif1 family DNA helicase Pfh1 plays a dual role in promoting replication fork termination. First, it facilitates replication past DNA-protein barriers, and second, it promotes the merging of replication forks. A failure of these processes in Pfh1-deficient cells results in aberrant chromosome segregation and heightened genome instability.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Inestabilidad Genómica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Segregación Cromosómica , ADN Helicasas/genética , ADN de Hongos/genética , ADN Ribosómico/genética , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética
2.
Mol Cell ; 37(6): 865-78, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20347428

RESUMEN

FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Inestabilidad Genómica , Histonas/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Secuencia de Aminoácidos , Animales , Línea Celular , Pollos , ADN/genética , Daño del ADN , ADN Helicasas/química , ADN Helicasas/genética , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Proteínas del Grupo de Complementación de la Anemia de Fanconi , Humanos , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Alineación de Secuencia , Intercambio de Cromátides Hermanas
3.
PLoS Genet ; 11(1): e1004899, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569253

RESUMEN

Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Endonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación/genética , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Humanos , Fosforilación , Saccharomyces cerevisiae , Solubilidad
4.
Mol Cell ; 32(1): 118-28, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18851838

RESUMEN

The Fanconi anemia (FA) core complex promotes the tolerance/repair of DNA damage at stalled replication forks by catalyzing the monoubiquitination of FANCD2 and FANCI. Intriguingly, the core complex component FANCM also catalyzes branch migration of model Holliday junctions and replication forks in vitro. Here we have characterized the ortholog of FANCM in fission yeast Fml1 in order to understand the physiological significance of this activity. We show that Fml1 has at least two roles in homologous recombination-it promotes Rad51-dependent gene conversion at stalled/blocked replication forks and limits crossing over during mitotic double-strand break repair. In vitro Fml1 catalyzes both replication fork reversal and D loop disruption, indicating possible mechanisms by which it can fulfill its pro- and antirecombinogenic roles.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Intercambio Genético , ADN Helicasas/genética , Replicación del ADN , ADN Cruciforme , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Conversión Génica , Genes Fúngicos , Humanos , Mutación , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/genética
5.
Nucleic Acids Res ; 42(22): 13723-35, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25414342

RESUMEN

During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.


Asunto(s)
ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Meiosis/genética , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Roturas del ADN de Doble Cadena , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Reparación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Endonucleasas/fisiología , Eliminación de Gen , Rec A Recombinasas/genética , Rec A Recombinasas/fisiología , Proteínas de Schizosaccharomyces pombe/genética
6.
Nucleic Acids Res ; 40(19): 9584-95, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22844101

RESUMEN

In fission yeast, the DNA helicase Fml1, which is an orthologue of human FANCM, is a key component of the machinery that drives and governs homologous recombination (HR). During the repair of DNA double-strand breaks by HR, it limits the occurrence of potentially deleterious crossover recombinants, whereas at stalled replication forks, it promotes HR to aid their recovery. Here, we have mutated conserved residues in Fml1's Walker A (K99R) and Walker B (D196N) motifs to determine whether its activities are dependent on its ability to hydrolyse ATP. Both Fml1(K99R) and Fml1(D196N) are proficient for DNA binding but totally deficient in DNA unwinding and ATP hydrolysis. In vivo both mutants exhibit a similar reduction in recombination at blocked replication forks as a fml1Δ mutant indicating that Fml1's motor activity, fuelled by ATP hydrolysis, is essential for its pro-recombinogenic role. Intriguingly, both fml1(K99R) and fml1(D196N) mutants exhibit greater sensitivity to genotoxins and higher levels of crossing over during DSB repair than a fml1Δ strain. These data suggest that without its motor activity, the binding of Fml1 to its DNA substrate can impede alternative mechanisms of repair and crossover avoidance.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN por Recombinación , Proteínas de Schizosaccharomyces pombe/metabolismo , Adenosina Trifosfatasas/genética , Núcleo Celular/enzimología , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Replicación del ADN , ADN Cruciforme/metabolismo , Conversión Génica , Metilmetanosulfonato/toxicidad , Mitosis/genética , Mutágenos/toxicidad , Mutación , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
7.
Biochem Soc Trans ; 41(6): 1726-30, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24256282

RESUMEN

Centromere proteins CENP-S and CENP-X are members of the constitutive centromere-associated network, which is a conserved group of proteins that are needed for the assembly and function of kinetochores at centromeres. Intriguingly CENP-S and CENP-X have alter egos going by the names of MHF1 (FANCM-associated histone-fold protein 1) and MHF2 respectively. In this guise they function with a DNA translocase called FANCM (Fanconi's anemia complementation group M) to promote DNA repair and homologous recombination. In the present review we discuss current knowledge of the biological roles of CENP-S and CENP-X and how their dual existence may be a common feature of CCAN (constitutive centromere-associated network) proteins.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Recombinación Genética , Proteínas Supresoras de Tumor/metabolismo , ADN/genética , ADN/metabolismo , Humanos
8.
Nucleic Acids Res ; 39(5): 1718-31, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21149262

RESUMEN

The F-box DNA helicase Fbh1 constrains homologous recombination in vegetative cells, most likely through an ability to displace the Rad51 recombinase from DNA. Here, we provide the first evidence that Fbh1 also serves a vital meiotic role in fission yeast to promote normal chromosome segregation. In the absence of Fbh1, chromosomes remain entangled or segregate unevenly during meiosis, and genetic and cytological data suggest that this results in part from a failure to efficiently dismantle Rad51 nucleofilaments that form during meiotic double-strand break repair.


Asunto(s)
Segregación Cromosómica , ADN Helicasas/fisiología , Proteínas F-Box/fisiología , Meiosis/genética , Recombinasa Rad51/análisis , Proteínas de Schizosaccharomyces pombe/análisis , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Roturas del ADN de Doble Cadena , ADN Helicasas/análisis , ADN Helicasas/genética , Reparación del ADN , ADN de Hongos/análisis , Proteínas de Unión al ADN/genética , Proteínas F-Box/análisis , Proteínas F-Box/genética , Conversión Génica , Eliminación de Gen , Proteínas Nucleares/análisis , Recombinación Genética , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Esporas Fúngicas/crecimiento & desarrollo
9.
Nucleic Acids Res ; 39(15): 6568-84, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21576223

RESUMEN

Most DNA double-strand breaks (DSBs) in S- and G2-phase cells are repaired accurately by Rad51-dependent sister chromatid recombination. However, a minority give rise to gross chromosome rearrangements (GCRs), which can result in disease/death. What determines whether a DSB is repaired accurately or inaccurately is currently unclear. We provide evidence that suggests that perturbing replication by a non-programmed protein-DNA replication fork barrier results in the persistence of replication intermediates (most likely regions of unreplicated DNA) into mitosis, which results in anaphase bridge formation and ultimately to DNA breakage. However, unlike previously characterised replication-associated DSBs, these breaks are repaired mainly by Rad51-independent processes such as single-strand annealing, and are therefore prone to generate GCRs. These data highlight how a replication-associated DSB can be predisposed to give rise to genome rearrangements in eukaryotes.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , Recombinación Genética , Anafase/genética , Deleción Cromosómica , ADN/ultraestructura , ADN Helicasas/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Represoras Lac/metabolismo , Mitosis , Mutación , Regiones Operadoras Genéticas , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Nat Commun ; 14(1): 7730, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007544

RESUMEN

Replication fork stalling can provoke fork reversal to form a four-way DNA junction. This remodelling of the replication fork can facilitate repair, aid bypass of DNA lesions, and enable replication restart, but may also pose a risk of over-replication during fork convergence. We show that replication fork stalling at a site-specific barrier in fission yeast can induce gene duplication-deletion rearrangements that are independent of replication restart-associated template switching and Rad51-dependent multi-invasion. Instead, they resemble targeted gene replacements (TGRs), requiring the DNA annealing activity of Rad52, the 3'-flap nuclease Rad16-Swi10, and mismatch repair protein Msh2. We propose that excess DNA, generated during the merging of a canonical fork with a reversed fork, can be liberated by a nuclease and integrated at an ectopic site via a TGR-like mechanism. This highlights how over-replication at replication termination sites can threaten genome stability in eukaryotes.


Asunto(s)
Replicación del ADN , Duplicación de Gen , Replicación del ADN/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN , Recombinasa Rad51/metabolismo
11.
Nucleic Acids Res ; 38(6): 1866-73, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20040574

RESUMEN

A key step in meiotic recombination involves the nucleolytic resolution of Holliday junctions to generate crossovers. Although the enzyme that performs this function in human cells is presently unknown, recent studies led to the identification of the XPG-family endonuclease GEN1 that promotes Holliday junction resolution in vitro, suggesting that it may perform a related function in vivo. Here, we show that ectopic expression of GEN1 in fission yeast mus81Delta strains results in Holliday junction resolution and crossover formation during meiosis.


Asunto(s)
Proteínas de Unión al ADN/genética , Endonucleasas/genética , Resolvasas de Unión Holliday/metabolismo , Meiosis/genética , Proteínas de Schizosaccharomyces pombe/genética , ADN Helicasas/genética , Prueba de Complementación Genética , Resolvasas de Unión Holliday/genética , Humanos , Mutágenos/toxicidad , Mutación , Fenotipo , Recombinación Genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
12.
Nat Commun ; 13(1): 7293, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435847

RESUMEN

It is thought that many of the simple and complex genomic rearrangements associated with congenital diseases and cancers stem from mistakes made during the restart of collapsed replication forks by recombination enzymes. It is hypothesised that this recombination-mediated restart process transitions from a relatively accurate initiation phase to a less accurate elongation phase characterised by extensive template switching between homologous, homeologous and microhomologous DNA sequences. Using an experimental system in fission yeast, where fork collapse is triggered by a site-specific replication barrier, we show that ectopic recombination, associated with the initiation of recombination-dependent replication (RDR), is driven mainly by the Rad51 recombinase, whereas template switching, during the elongation phase of RDR, relies more on DNA annealing by Rad52. This finding provides both evidence and a mechanistic basis for the transition hypothesis.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Replicación del ADN , ADN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Unión al ADN/metabolismo
13.
Genetics ; 182(1): 41-54, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19237686

RESUMEN

Meiotic recombination enhances genetic diversity as well as ensures proper segregation of homologous chromosomes, requiring Spo11-initiated double-strand breaks (DSBs). DNA deaminases act on regions of single-stranded DNA and deaminate cytosine to uracil (dU). In the immunoglobulin locus, this lesion will initiate point mutations, gene conversion, and DNA recombination. To begin to delineate the effect of induced base lesions on meiosis, we analyzed the effect of expressing DNA deaminases (activation-induced deaminase, AID, and APOBEC3C) in germ cells. We show that meiotic dU:dG lesions can partially rescue a spo11Delta phenotype in yeast and worm. In rec12 Schizosaccharomyces pombe, AID expression increased proper chromosome segregation, thereby enhancing spore viability, and induced low-frequency meiotic crossovers. Expression of AID in the germ cells of Caenorhabditis elegans spo-11 induced meiotic RAD-51 foci formation and chromosomal bivalency and segregation, as well as an increase in viability. RNAi experiments showed that this rescue was dependent on uracil DNA-glycosylase (Ung). Furthermore, unlike ionizing radiation-induced spo-11 rescue, AID expression did not induce large numbers of DSBs during the rescue. This suggests that the products of DNA deamination and base excision repair, such as uracil, an abasic site, or a single-stranded nick, are sufficient to initiate and alter meiotic recombination in uni- and multicellular organisms.


Asunto(s)
Segregación Cromosómica , Citidina Desaminasa/genética , Meiosis/fisiología , Recombinación Genética , Animales , Animales Modificados Genéticamente , Apoptosis , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Endodesoxirribonucleasas , Esterasas/genética , Esterasas/metabolismo , Humanos , Etiquetado Corte-Fin in Situ , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
14.
Methods Mol Biol ; 521: 535-52, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19563128

RESUMEN

Replication forks (RFs) frequently encounter barriers or lesions in template DNA that can cause them to stall and/or break. Efficient genome duplication therefore depends on multiple mechanisms that variously act to stabilize, repair, and restart perturbed RFs. Integral to at least some of these mechanisms are homologous recombination (HR) proteins, but our knowledge of how they act to ensure high-fidelity genome replication remains incomplete. To help better understand the relationship between DNA replication and HR, fission yeast strains have been engineered to contain intrachromosmal recombination substrates consisting of non-tandem direct repeats of ade6 heteroalleles. The substrates have been modified to include site-specific RF barriers within the duplication. Importantly, direct repeat recombinants appear to arise predominantly during DNA replication via sister chromatid interactions and are induced by factors that perturb RFs. Using simple plating experiments to assay recombinant formation, these strains have proved to be useful tools in monitoring the effects of impeding RFs on HR and its genetic control. The strains are available on request, and here we describe in detail how some of them can be used to determine the effect of your mutation of choice on spontaneous, DNA damage-induced, and replication block-induced recombinant formation.


Asunto(s)
Replicación del ADN , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Recombinación Genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Daño del ADN , Genes Fúngicos , Mutágenos/toxicidad , Mutación , Recombinación Genética/efectos de los fármacos , Recombinación Genética/efectos de la radiación , Secuencias Repetitivas de Ácidos Nucleicos , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/efectos de la radiación , Rayos Ultravioleta
15.
Elife ; 82019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31149897

RESUMEN

Protein-DNA complexes can impede DNA replication and cause replication fork collapse. Whilst it is known that homologous recombination is deployed in such instances to restart replication, it is unclear how a stalled fork transitions into a collapsed fork at which recombination proteins can load. Previously we established assays in Schizosaccharomyces pombe for studying recombination induced by replication fork collapse at the site-specific protein-DNA barrier RTS1 (Nguyen et al., 2015). Here, we provide evidence that efficient recruitment/retention of two key recombination proteins (Rad51 and Rad52) to RTS1 depends on unloading of the polymerase sliding clamp PCNA from DNA by Elg1. We also show that, in the absence of Elg1, reduced recombination is partially suppressed by deleting fbh1 or, to a lesser extent, srs2, which encode known anti-recombinogenic DNA helicases. These findings suggest that PCNA unloading by Elg1 is necessary to limit Fbh1 and Srs2 activity, and thereby enable recombination to proceed.


Asunto(s)
Proteínas Portadoras/metabolismo , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinación Genética/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , ADN de Hongos/metabolismo , Fluorescencia , Modelos Biológicos , Mutación/genética , Fase S
16.
Elife ; 82019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30667359

RESUMEN

Homologous recombination helps ensure the timely completion of genome duplication by restarting collapsed replication forks. However, this beneficial function is not without risk as replication restarted by homologous recombination is prone to template switching (TS) that can generate deleterious genome rearrangements associated with diseases such as cancer. Previously we established an assay for studying TS in Schizosaccharomyces pombe (Nguyen et al., 2015). Here, we show that TS is detected up to 75 kb downstream of a collapsed replication fork and can be triggered by head-on collision between the restarted fork and RNA Polymerase III transcription. The Pif1 DNA helicase, Pfh1, promotes efficient restart and also suppresses TS. A further three conserved helicases (Fbh1, Rqh1 and Srs2) strongly suppress TS, but there is no change in TS frequency in cells lacking Fml1 or Mus81. We discuss how these factors likely influence TS.


Asunto(s)
Replicación del ADN/genética , Recombinación Homóloga/genética , Schizosaccharomyces/genética , Moldes Genéticos , Emparejamiento Base/genética , Mutación/genética , ARN de Transferencia/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Elife ; 82019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31855181

RESUMEN

Previously we reported that a process called inter-fork strand annealing (IFSA) causes genomic deletions during the termination of DNA replication when an active replication fork converges on a collapsed fork (Morrow et al., 2017). We also identified the FANCM-related DNA helicase Fml1 as a potential suppressor of IFSA. Here, we confirm that Fml1 does indeed suppress IFSA, and show that this function depends on its catalytic activity and ability to interact with Mhf1-Mhf2 via its C-terminal domain. Finally, a plausible mechanism of IFSA suppression is demonstrated by the finding that Fml1 can catalyse regressed fork restoration in vitro.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/genética , Replicación del ADN/genética , Genoma Fúngico/genética , Mitosis/genética , Schizosaccharomyces/genética
18.
Sci Rep ; 9(1): 16446, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712578

RESUMEN

Meiotic recombination is essential for producing healthy gametes, and also generates genetic diversity. DNA double-strand break (DSB) formation is the initiating step of meiotic recombination, producing, among other outcomes, crossovers between homologous chromosomes (homologs), which provide physical links to guide accurate chromosome segregation. The parameters influencing DSB position and repair are thus crucial determinants of reproductive success and genetic diversity. Using Schizosaccharomyces pombe, we show that the distance between sequence polymorphisms across homologs has a strong impact on meiotic recombination rate. The closer the sequence polymorphisms are to each other across the homologs the fewer recombination events were observed. In the immediate vicinity of DSBs, sequence polymorphisms affect the frequency of intragenic recombination events (gene conversions). Additionally, and unexpectedly, the crossover rate of flanking markers tens of kilobases away from the sequence polymorphisms was affected by their relative position to each other amongst the progeny having undergone intragenic recombination. A major regulator of this distance-dependent effect is the MutSα-MutLα complex consisting of Msh2, Msh6, Mlh1, and Pms1. Additionally, the DNA helicases Rqh1 and Fml1 shape recombination frequency, although the effects seen here are largely independent of the relative position of the sequence polymorphisms.


Asunto(s)
Meiosis/genética , Recombinación Genética , Proteínas de Unión al ADN/metabolismo , Proteínas MutL/metabolismo , Mutación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
19.
DNA Repair (Amst) ; 6(7): 1004-17, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17409028

RESUMEN

Cells of all living organisms have evolved complex mechanisms that serve to stabilise, repair and restart stalled, blocked and broken replication forks. The heterodimeric Mus81-Eme1/Mms4 structure-specific endonuclease appears to play an important role(s) in homologous recombination-mediated processing of such perturbed forks. This enzyme has been implicated in the cleavage of stalled and blocked replication forks to initiate recombination, as well as in the processing of recombination intermediates that result from repairing damaged forks. In this review we assess the biochemical and genetic evidence for the mitotic role of Mus81-Eme1/Mms4 at replication forks and in repairing post-replication DNA damage. Mus81 appears to act when replication is impeded by genotoxins or by impairment of the replication machinery, or when arrested replication forks are not adequately protected. We discuss how its action is regulated by the S-phase cell cycle checkpoint, depending on the nature of the stalled or damaged fork. We also present a new way in which Mus81 may limit crossing over during the repair of post-replication gaps, and explore Mus81's interplay with other components of the recombination machinery, including the RecQ helicases that also play important roles in processing replication and recombination intermediates.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Animales , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado , Humanos , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo
20.
Mol Cell Biol ; 25(18): 8084-96, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16135800

RESUMEN

A key step in homologous recombination is the loading of Rad51 onto single-stranded DNA to form a nucleoprotein filament that promotes homologous DNA pairing and strand exchange. Mediator proteins, such as Rad52 and Rad55-Rad57, are thought to aid filament assembly by overcoming an inhibitory effect of the single-stranded-DNA-binding protein replication protein A. Here we show that mediator proteins are also required to enable fission yeast Rad51 (called Rhp51) to function in the presence of the F-box DNA helicase Fbh1. In particular, we show that the critical function of Rad22 (an orthologue of Rad52) in promoting Rhp51-dependent recombination and DNA repair can be mostly circumvented by deleting fbh1. Similarly, the reduced growth/viability and DNA damage sensitivity of an fbh1(-) mutant are variously suppressed by deletion of any one of the mediators Rad22, Rhp55, and Swi5. From these data we propose that Rhp51 action is controlled through an interplay between Fbh1 and the mediator proteins. Colocalization of Fbh1 with Rhp51 damage-induced foci suggests that this interplay occurs at the sites of nucleoprotein filament assembly. Furthermore, analysis of different fbh1 mutant alleles suggests that both the F-box and helicase activities of Fbh1 contribute to controlling Rhp51.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/metabolismo , Recombinación Genética/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Núcleo Celular/química , Núcleo Celular/metabolismo , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Daño del ADN/genética , ADN Helicasas/análisis , ADN Helicasas/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Proteínas F-Box/genética , Eliminación de Gen , Mutación , Recombinasa Rad51 , Recombinación Genética/fisiología , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/análisis , Proteínas de Schizosaccharomyces pombe/genética , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA