Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175109

RESUMEN

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

2.
Bioinform Adv ; 4(1): vbae114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165344

RESUMEN

Summary: We recently developed EagleImp, a free software that combines genotype phasing and imputation in a single tool. By introducing algorithmic and technical improvements we accelerated the classical two-step approach using Eagle2 and PBWT. Here, we demonstrate how to use field-programmable gate arrays (FPGAs) to accelerate EagleImp even further by a factor of up to 93% without loss of phasing and imputation quality. Due to the speed advantage over a not accelerated processor-based implementation, the FPGA extension of EagleImp allows the user to choose a more resource-intensive parameter setting in exchange for computation time to further improve phasing and imputation quality. Availability and implementation: EagleImp and its FPGA extension are freely available at https://github.com/ikmb/eagleimp and https://github.com/ikmb/eagleimp-fpga.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA