Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Artif Organs ; 12(4): 247-57, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20035398

RESUMEN

In vitro hepatocyte bioreactor functionality depends particularly on maintaining appropriate oxygen levels and exposure to nonparenchymal cells. An attractive solution without immunological consequences to the patient is incorporating a perfluorocarbon oxygen carrier in the circulating medium and co-culturing hepatocytes with stellate cells. Since bioreactors are normally sealed sterile units, demonstrating metabolic functionality is hindered by limited access to the cells after their aggregation in the matrix. A novel possibility is to use positron emission tomography (PET) to image cellular radioactive glucose uptake under O(2)-limited conditions. In this study, primary cell isolation procedures were carried out on eight pigs. Pairs of cell-seeded and cell-free (control) bioreactors with and without perfluorocarbon were cultured under identical conditions and were oxygenated using hypoxic (5% O(2)) and ambient (20% O(2)) gas mixes. Sixteen PET scans were conducted 24 h after cell isolation, the same timescale as that involved in treating a liver failure patient with a primary-cell bioreactor. In all cases, cell-seeded bioreactors without perfluorocarbon were more radioactive, i.e., were more glycolytic, than those with perfluorocarbon. This difference was significant in the hypoxic pair of bioreactors but not in the ambient pair of bioreactors. Additionally, in the same hypoxic bioreactors, circulating extracellular steady-state glucose levels were significantly lower and lactate levels were higher than those in the ambient bioreactors. Similar findings have been made in other in vitro hepatocyte studies investigating the effects of perfluorocarbons. PET is attractive for studying in situ O(2)-dependent bioreactor metabolism because of its visual and numerically quantifiable outputs. Longer-term metabolic studies (e.g., 5-10 days) investigating the effect of perfluorocarbon on bioreactor longevity will complement these findings in the future.


Asunto(s)
Fluorocarburos/química , Glucosa/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Hígado Artificial , Animales , Reactores Biológicos , Técnicas de Cocultivo , Fluorodesoxiglucosa F18/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Tomografía de Emisión de Positrones , Radiofármacos/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA