Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Res Pract Thromb Haemost ; 8(1): 102312, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38327612

RESUMEN

Background: Direct oral anticoagulants are commonly prescribed for adults and increasingly also for children requiring anticoagulation therapy. While household medications should not be accessible to children, accidental, and intentional overdoses occur. Key Clinical Question: How should apixaban overdose in children be managed?. Clinical Approach: We present a case of an accidental overdose with the factor Xa antagonist apixaban in a young child and propose an approach to the management of cases of apixaban overdose in children. Conclusion: Given the increasing use of direct oral anticoagulants, it is important to have an approach to the management of overdose of these medications.

3.
Environ Evid ; 12(1): 21, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39294699

RESUMEN

BACKGROUND: Nature-based interventions (NbIs) for climate change mitigation include a diverse set of interventions aimed at conserving, restoring, and/or managing natural and modified ecosystems to improve their ability to store and sequester carbon and avoid greenhouse gas (GHG) emissions. Recent projections estimate that terrestrial NbIs can lead to more than one-third of the climate change mitigation necessary to meet the Paris Climate Agreement by 2030. Further, these interventions can provide co-benefits in the form of social and ecological outcomes. Despite growing recognition of the potential benefits, a clear characterization of the distribution and occurrence of evidence which supports linkages between different types of NbIs and outcomes for climate change mitigation, ecosystems, and people remains poorly understood. METHODS: This systematic map assesses the evidence base on the links between NbIs and climate change mitigation, social, and ecological outcomes in tropical and subtropical terrestrial regions. We searched three bibliographic databases, 65 organization websites, and conducted backward citation chasing within 39 existing evidence syntheses to identify relevant articles. Additionally, we reached out to key informants for additional sources of evidence. We then used machine learning to rank returned results by relevance at the title and abstract stage and manually screened for inclusion using predefined criteria at the title, abstract, and full text stages. We extracted relevant meta-data from included articles using an a priori coding scheme. Lastly, we conducted a targeted, complementary search to identify relevant review and synthesis articles to provide broader context for the findings of the systematic map. REVIEW FINDINGS: We included 948 articles in this systematic map. Most of the evidence base (56%) examined links between protection, natural resource management, and restoration interventions with changes to 'proxy' outcomes for climate change mitigation (changes to land condition, land cover, and/or land use). Other areas with high occurrence of articles included linkages between interventions within natural resource management and trees in croplands categories and changes to aboveground carbon storage and/or sequestration (17% of articles). A key knowledge gap was on measured changes in GHG emissions across all intervention types (6% of articles). Overall, articles in the evidence base did not often assess changes in co-benefits alongside direct or indirect changes for climate change mitigation (32%). In most cases, the evidence base contained studies which did not explicitly test for causal linkages using appropriate experimental or quasi-experimental designs. CONCLUSIONS: The evidence base for NbIs is significant and growing; however, key gaps in knowledge hamper the ability to inform ongoing and future investment and implementation at scale. More comprehensive evidence is needed to support causal inference between NbIs and direct outcomes for climate change mitigation to better determine additionality, permanence, leakage, and other unintended consequences. Similarly, priorities emerging from this map include the need for coordinated and harmonized efforts to collect diverse data types to better understand whether and how other outcomes (e.g. social, ecological) of NbIs can be achieved synergistically with mitigation objectives. Understanding potential benefits and trade-offs of NbIs is particularly urgent to inform rapidly expanding carbon markets for nature.

4.
Environ Evid ; 11(1): 15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465308

RESUMEN

Background: Natural climate solutions (NCS)-actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions-are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown-however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods: To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access. Supplementary Information: The online version contains supplementary material available at 10.1186/s13750-022-00268-w.

5.
Environ Evid ; 11(1): 15, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-39294703

RESUMEN

BACKGROUND: Natural climate solutions (NCS)-actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions-are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown-however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. METHODS: To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.

6.
Int J Lab Hematol ; 42 Suppl 1: 75-81, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32115888

RESUMEN

A small but important proportion of patients with myelodysplasia (MDS) and acute leukaemia (AL) have underlying germline mutations in leukaemia susceptibility genes. The majority of these variants predispose to myeloid neoplasms with a smaller number associated with acute lymphoblastic leukaemia (ALL). The 2016 revision of the WHO classification of tumours of haematopoietic and lymphoid tissues has defined a number of myeloid neoplasms with germline predisposition (Blood, 127, 2016, 2391) alerting clinicians to the importance of this underlying diagnosis. Advances in genetic technology and access to testing will undoubtably result in increased numbers of patients and families with leukaemia predisposition syndromes being identified. Here we summarize the salient biology and genetic and clinical features of a number of these conditions including some more recently described genetic variants.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Hematológicas/genética , Síndromes Mielodisplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Neoplasias Hematológicas/clasificación , Humanos , Síndromes Mielodisplásicos/clasificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA