Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 184(13): 3410-3425.e17, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34062120

RESUMEN

To control viral infection, vertebrates rely on both inducible interferon responses and less well-characterized cell-intrinsic responses composed of "at the ready" antiviral effector proteins. Here, we show that E3 ubiquitin ligase TRIM7 is a cell-intrinsic antiviral effector that restricts multiple human enteroviruses by targeting viral 2BC, a membrane remodeling protein, for ubiquitination and proteasome-dependent degradation. Selective pressure exerted by TRIM7 results in emergence of a TRIM7-resistant coxsackievirus with a single point mutation in the viral 2C ATPase/helicase. In cultured cells, the mutation helps the virus evade TRIM7 but impairs optimal viral replication, and this correlates with a hyperactive and structurally plastic 2C ATPase. Unexpectedly, the TRIM7-resistant virus has a replication advantage in mice and causes lethal pancreatitis. These findings reveal a unique mechanism for targeting enterovirus replication and provide molecular insight into the benefits and trade-offs of viral evolution imposed by a host restriction factor.


Asunto(s)
Enterovirus/fisiología , Enterovirus/patogenicidad , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Femenino , Humanos , Inflamación/patología , Ratones Endogámicos C57BL , Mutación/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , ARN Viral/metabolismo , Ubiquitina/metabolismo , Proteínas Virales/genética
2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873063

RESUMEN

Flaviviruses such as Zika virus and West Nile virus have the potential to cause severe neuropathology if they invade the central nervous system. The type I interferon response is well characterized as contributing to control of flavivirus-induced neuropathogenesis. However, the interferon-stimulated gene (ISG) effectors that confer these neuroprotective effects are less well studied. Here, we used an ISG expression screen to identify Shiftless (SHFL, C19orf66) as a potent inhibitor of diverse positive-stranded RNA viruses, including multiple members of the Flaviviridae (Zika, West Nile, dengue, yellow fever, and hepatitis C viruses). In cultured cells, SHFL functions as a viral RNA-binding protein that inhibits viral replication at a step after primary translation of the incoming genome. The murine ortholog, Shfl, is expressed constitutively in multiple tissues, including the central nervous system. In a mouse model of Zika virus infection, Shfl-/- knockout mice exhibit reduced survival, exacerbated neuropathological outcomes, and increased viral replication in the brain and spinal cord. These studies demonstrate that Shfl is an important antiviral effector that contributes to host protection from Zika virus infection and virus-induced neuropathological disease.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Infección por el Virus Zika/patología , Virus Zika/metabolismo , Animales , Línea Celular , Efecto Citopatogénico Viral , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/virología , Flavivirus/genética , Infecciones por Flavivirus/genética , Infecciones por Flavivirus/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fármacos Neuroprotectores/metabolismo , Proteínas de Unión al ARN/genética , Replicación Viral/fisiología , Virus Zika/patogenicidad , Infección por el Virus Zika/genética
3.
Toxicol Appl Pharmacol ; 400: 115037, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32417438

RESUMEN

BACKGROUND: In recent years, small animal arterial port-catheter systems have been implemented in rodents with reasonable success. The aim of the current study is to employ the small animal port-catheter system to evaluate the safety of multiple hepatic-artery infusions (HAI) of low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticles to the rat liver. METHODS: Wistar rats underwent surgical placement of indwelling HAI ports. Repeated administrations of PBS or LDL-DHA nanoparticles were performed through the port at baseline and days 3 and 6. Rats were sacrificed on day 9 at which point blood and various organs were collected for histopathology and biochemical analyses. RESULTS: The port-catheter systems were implanted successfully and repeated infusions of PBS or LDL-DHA nanoparticles were tolerated well by all animals over the duration of the study. Measurements of serum liver/renal function tests, glucose and lipid levels did not differ between control and LDL-DHA treated rats. The liver histology was unremarkable in the LDL-DHA treated rats and the expression of hepatic inflammatory regulators (NF-κß, IL-6 and CRP) were similar to control rats. Repeated infusions of LDL-DHA nanoparticles did not alter liver glutathione content or the lipid profile in the treated rats. The DHA extracted by the liver was preferentially metabolized to the anti-inflammatory DHA-derived mediator, protectin DX. CONCLUSION: Our findings indicate that repeated HAI of LDL-DHA nanoparticles is not only well tolerated and safe in the rat, but may also be protective to the liver.


Asunto(s)
Catéteres de Permanencia/efectos adversos , Ácidos Docosahexaenoicos/administración & dosificación , Arteria Hepática , Infusiones Intraarteriales/efectos adversos , Lipoproteínas LDL/administración & dosificación , Hígado/metabolismo , Nanopartículas/administración & dosificación , Animales , Glucemia/análisis , Ácidos Docosahexaenoicos/farmacocinética , Infusiones Intraarteriales/métodos , Pruebas de Función Renal , Lípidos/sangre , Lipoproteínas LDL/farmacocinética , Hígado/irrigación sanguínea , Pruebas de Función Hepática , Masculino , Ratas Wistar , Distribución Tisular
4.
J Inherit Metab Dis ; 41(2): 231-238, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29110178

RESUMEN

Fabry disease is a glycosphingolipidosis caused by deficient activity of α-galactosidase A; it is one of a few diseases that are associated with priapism, an abnormal prolonged erection of the penis. The goal of this study was to investigate the pathogenesis of Fabry disease-associated priapism in a mouse model of the disease. We found that Fabry mice develop late-onset priapism. Neuronal nitric oxide synthase (nNOS), which was predominantly present as the 120-kDa N-terminus-truncated form, was significantly upregulated in the penis of 18-month-old Fabry mice compared to wild type controls (~fivefold). Endothelial NOS (eNOS) was also upregulated (~twofold). NO level in penile tissues of Fabry mice was significantly higher than wild type controls at 18 months. Gene transfer-mediated enzyme replacement therapy reversed abnormal nNOS expression in the Fabry mouse penis. The penile nNOS level was restored by antiandrogen treatment, suggesting that hyperactive androgen receptor signaling in Fabry mice may contribute to nNOS upregulation. However, the phosphodiesterase-5A expression level and the adenosine content in the penis, which are known to play roles in the development of priapism in other etiologies, were unchanged in Fabry mice. In conclusion, these data suggested that increased nNOS (and probably eNOS) content and the consequential elevated NO production and high arterial blood flow in the penis may be the underlying mechanism of priapism in Fabry mice. Furthermore, in combination with previous findings, this study suggested that regulation of NOS expression is susceptible to α-galactosidase A deficiency, and this may represent a general pathogenic mechanism of Fabry vasculopathy.


Asunto(s)
Enfermedad de Fabry/complicaciones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Erección Peniana , Pene/enzimología , Priapismo/etiología , Animales , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos , Enfermedad de Fabry/enzimología , Enfermedad de Fabry/fisiopatología , Enfermedad de Fabry/terapia , Terapia Genética/métodos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Pene/fisiopatología , Priapismo/enzimología , Priapismo/fisiopatología , Priapismo/terapia , Flujo Sanguíneo Regional , Transducción de Señal , Regulación hacia Arriba , alfa-Galactosidasa/biosíntesis , alfa-Galactosidasa/genética
5.
Proc Natl Acad Sci U S A ; 112(42): E5699-705, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26371324

RESUMEN

TREX1 is an exonuclease that digests DNA in the cytoplasm. Loss-of-function mutations of TREX1 are linked to Aicardi-Goutieres Syndrome (AGS) and systemic lupus erythematosus (SLE) in humans. Trex1(-/-) mice exhibit autoimmune and inflammatory phenotypes that are associated with elevated expression of interferon (IFN)-induced genes (ISGs). Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates the IFN pathway. Upon binding to DNA, cGAS is activated to catalyze the synthesis of cGAMP, which functions as a second messenger that binds and activates the adaptor protein STING to induce IFNs and other cytokines. Here we show that genetic ablation of cGas in Trex1(-/-) mice eliminated all detectable pathological and molecular phenotypes, including ISG induction, autoantibody production, aberrant T-cell activation, and lethality. Even deletion of just one allele of cGas largely rescued the phenotypes of Trex1(-/-) mice. Similarly, deletion of cGas in mice lacking DNaseII, a lysosomal enzyme that digests DNA, rescued the lethal autoimmune phenotypes of the DNaseII(-/-) mice. Through quantitative mass spectrometry, we found that cGAMP accumulated in mouse tissues deficient in Trex1 or DNaseII and that this accumulation was dependent on cGAS. These results demonstrate that cGAS activation causes the autoimmune diseases in Trex1(-/-) and DNaseII(-/-) mice and suggest that inhibition of cGAS may lead to prevention and treatment of some human autoimmune diseases caused by self-DNA.


Asunto(s)
Enfermedades Autoinmunes/enzimología , ADN/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , Autoanticuerpos/biosíntesis , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , AMP Cíclico/biosíntesis , Citocinas/metabolismo , Activación Enzimática , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Mediadores de Inflamación/metabolismo , Activación de Linfocitos , Ratones , Ratones Noqueados , Nucleotidiltransferasas/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Linfocitos T/inmunología
6.
Hum Mol Genet ; 24(11): 3181-91, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25701874

RESUMEN

Fabry disease is caused by deficient activity of lysosomal enzyme α-galactosidase A. The enzyme deficiency results in intracellular accumulation of glycosphingolipids, leading to a variety of clinical manifestations including hypertrophic cardiomyopathy and renal insufficiency. The mechanism through which glycosphingolipid accumulation causes these manifestations remains unclear. Current treatment, especially when initiated at later stage of the disease, does not produce completely satisfactory results. Elucidation of the pathogenesis of Fabry disease is therefore crucial to developing new treatments. We found increased activity of androgen receptor (AR) signaling in Fabry disease. We subsequently also found that blockade of AR signaling either through castration or AR-antagonist prevented and reversed cardiac and kidney hypertrophic phenotype in a mouse model of Fabry disease. Our findings implicate abnormal AR pathway in the pathogenesis of Fabry disease and suggest blocking AR signaling as a novel therapeutic approach.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Enfermedad de Fabry/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Enfermedades Renales/metabolismo , Receptores Androgénicos/metabolismo , Animales , Enfermedad de Fabry/tratamiento farmacológico , Femenino , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/tratamiento farmacológico , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Androgénicos/genética , Transducción de Señal , Transcripción Genética
7.
Proc Natl Acad Sci U S A ; 108(42): 17390-5, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21960441

RESUMEN

RIG-I-like receptors (RLRs) activate host innate immune responses against virus infection through recruiting the mitochondrial adaptor protein MAVS (also known as IPS1, VISA, or CARDIF). Here we show that MAVS also plays a pivotal role in maintaining intestinal homeostasis. We found that MAVS knockout mice developed more severe mortality and morbidity than WT animals in an experimental model of colitis. Bone marrow transplantation experiments revealed that MAVS in cells of nonhematopoietic origin plays a dominant role in the protection against colitis. Importantly, RNA species derived from intestinal commensal bacteria activate the RIG-I-MAVS pathway to induce the production of multiple cytokines and antimicrobial peptides, including IFN-ß and RegIIIγ. These results unveil a previously unexplored role of MAVS in monitoring intestinal commensal bacteria and maintaining tissue homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Colitis/inmunología , Colitis/prevención & control , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Trasplante de Médula Ósea/inmunología , Colitis/inducido químicamente , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/inmunología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata , Intestinos/inmunología , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , ARN Bacteriano/inmunología
8.
Wound Repair Regen ; 21(5): 740-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23926906

RESUMEN

The purpose of this study was to compare two negative-pressure wound healing systems (NPWT), -75 mmHg with a silicone-coated (SC) dressing and -125 mmHg with polyurethane foam dressing (standard of care). In addition, this study compared the effects of two different dressing interfaces, SC dressing and gauze, with -75 mmHg pressure. For both comparisons, two groups of five pigs were evaluated over a 21-day time course. Two excisional wounds were made on each animal and NPWT dressings were applied. A canvas saddle was constructed to hold the NPWT device so the animal had free range of the pen. Dressings were changed twice a week and wound measurements were taken. Specimens for histology and gene expression analyses were taken on day 7 and 21. These data show that there is increased expression in a few genes associated with remodeling and inflammatory processes in the NPWT-125 with polyurethane foam as compared with the NPWT-75 with SC dressing. These two systems, however, are equivalent with respect to wound healing, histology, and gene expression over 21 days of healing. Further, we demonstrate that there is no difference in measure of healing between the SC dressing and a basic gauze dressing.


Asunto(s)
Vendajes , Tejido de Granulación/patología , Terapia de Presión Negativa para Heridas , Poliuretanos/farmacología , Siliconas/farmacología , Cicatrización de Heridas , Heridas y Lesiones/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Tejido de Granulación/fisiopatología , Porcinos , Resultado del Tratamiento , Heridas y Lesiones/patología , Heridas y Lesiones/terapia
9.
J Neurol Sci ; 446: 120564, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731358

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia found in the elderly and disease progression is associated with accumulation of Amyloid beta 1-42 (Aß42) in brain. An immune-mediated approach as a preventive intervention to reduce amyloid plaques without causing brain inflammation is highly desirable for future clinical use. Genetic immunization, in which the immunizing agent is DNA encoding Aß42, has great potential because the immune response to DNA delivered into the skin is generally non-inflammatory, and thus differs quantitatively and qualitatively from immune responses elicited by peptides, which are inflammatory with production of IFNγ and IL-17 cytokines by activated T cells. DNA immunization has historically been proven difficult to apply to larger mammals. A potential barrier to use DNA immunization in large mammals is the method for delivery of the DNA antigen. We tested jet injection in mice and rabbits and found good antibody production and safe immune responses (no inflammatory cytokines). We found significant reduction of amyloid plaques and Aß peptides in brains of the DNA Aß42 immunized 3xTg-AD mouse model. This study was designed to optimize DNA delivery for possible testing of the DNA Aß42 vaccine for AD prevention in a clinical trial.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Conejos , Animales , Péptidos beta-Amiloides/metabolismo , Placa Amiloide , Fragmentos de Péptidos , Inmunoterapia , Encéfalo/metabolismo , Citocinas , Inmunización/métodos , Inyecciones a Chorro , ADN , Ratones Transgénicos , Modelos Animales de Enfermedad , Mamíferos/genética , Mamíferos/metabolismo
10.
Science ; 376(6598): 1192-1202, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35511946

RESUMEN

Caloric restriction (CR) prolongs life span, yet the mechanisms by which it does so remain poorly understood. Under CR, mice self-impose chronic cycles of 2-hour feeding and 22-hour fasting, raising the question of if it is calories, fasting, or time of day that is the cause of this increased life span. We show here that 30% CR was sufficient to extend the life span by 10%; however, a daily fasting interval and circadian alignment of feeding acted together to extend life span by 35% in male C57BL/6J mice. These effects were independent of body weight. Aging induced widespread increases in gene expression associated with inflammation and decreases in the expression of genes encoding components of metabolic pathways in liver from ad libitum-fed mice. CR at night ameliorated these aging-related changes. Our results show that circadian interventions promote longevity and provide a perspective to further explore mechanisms of aging.


Asunto(s)
Restricción Calórica , Ritmo Circadiano , Longevidad , Animales , Regulación de la Expresión Génica , Longevidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Nucl Med Biol ; 114-115: 78-85, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36270073

RESUMEN

The number of non-melanoma skin cancer (NMSC) cases in the US will increase significantly over the next decade due to a rise in UV exposure. One of the treatment methods used to remove NMSC lesions is radiation therapy. The two types of radiation therapy used in the clinic are external beam therapy and brachytherapy. However, both require specialized on-site instrumentation and for patients to remain immobile. In this work, we studied an alternative radiation therapy - one that does not require expensive on-site equipment and would allow for enhanced patient mobility and, thus, comfort. We prepared sealed source, nylon-laminated holmium-166-containing radiotherapeutic bandages and used them in C3H/HeN mice with murine SCCVII tumor grafts. Overall, tumor sizes were smallest when treated with therapeutically relevant radiation doses via radiotherapeutic bandages (compared to controls), and no histological evidence of toxicity to tissues was observed. Thus, our optimized radiotherapeutic bandage offers a flexible approach to treating NMSC.


Asunto(s)
Neoplasias Cutáneas , Animales , Ratones , Ratones Endogámicos C3H , Neoplasias Cutáneas/radioterapia , Neoplasias Cutáneas/patología , Holmio , Vendajes
12.
bioRxiv ; 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32511345

RESUMEN

Zoonotic coronaviruses (CoVs) are significant threats to global health, as exemplified by the recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 1 . Host immune responses to CoV are complex and regulated in part through antiviral interferons. However, the interferon-stimulated gene products that inhibit CoV are not well characterized 2 . Here, we show that interferon-inducible lymphocyte antigen 6 complex, locus E (LY6E) potently restricts cellular infection by multiple CoVs, including SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV). Mechanistic studies revealed that LY6E inhibits CoV entry into cells by interfering with spike protein-mediated membrane fusion. Importantly, mice lacking Ly6e in hematopoietic cells were highly susceptible to murine CoV infection. Exacerbated viral pathogenesis in Ly6e knockout mice was accompanied by loss of hepatic and splenic immune cells and reduction in global antiviral gene pathways. Accordingly, we found that Ly6e directly protects primary B cells and dendritic cells from murine CoV infection. Our results demonstrate that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis. These findings advance our understanding of immune-mediated control of CoV in vitro and in vivo , knowledge that could help inform strategies to combat infection by emerging CoV.

13.
Nat Microbiol ; 5(11): 1330-1339, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32704094

RESUMEN

Zoonotic coronaviruses (CoVs) are substantial threats to global health, as exemplified by the emergence of two severe acute respiratory syndrome CoVs (SARS-CoV and SARS-CoV-2) and Middle East respiratory syndrome CoV (MERS-CoV) within two decades1-3. Host immune responses to CoVs are complex and regulated in part through antiviral interferons. However, interferon-stimulated gene products that inhibit CoVs are not well characterized4. Here, we show that lymphocyte antigen 6 complex, locus E (LY6E) potently restricts infection by multiple CoVs, including SARS-CoV, SARS-CoV-2 and MERS-CoV. Mechanistic studies revealed that LY6E inhibits CoV entry into cells by interfering with spike protein-mediated membrane fusion. Importantly, mice lacking Ly6e in immune cells were highly susceptible to a murine CoV-mouse hepatitis virus. Exacerbated viral pathogenesis in Ly6e knockout mice was accompanied by loss of hepatic immune cells, higher splenic viral burden and reduction in global antiviral gene pathways. Accordingly, we found that constitutive Ly6e directly protects primary B cells from murine CoV infection. Our results show that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis. These findings advance our understanding of immune-mediated control of CoV in vitro and in vivo-knowledge that could help inform strategies to combat infection by emerging CoVs.


Asunto(s)
Antígenos de Superficie/metabolismo , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Coronavirus/fisiología , Proteínas Ligadas a GPI/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Betacoronavirus/inmunología , Betacoronavirus/fisiología , COVID-19 , Coronavirus/inmunología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Neumonía Viral/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2 , Internalización del Virus
14.
J Alzheimers Dis ; 57(1): 97-112, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28222511

RESUMEN

A pathological hallmark of Alzheimer's disease (AD) are amyloid plaques in the brain consisting of aggregated amyloid-ß 42 peptide (Aß42) derived from cellular amyloid-ß protein precursor (AßPP). Based on successful experiments in mouse AD models, active immunization with Aß42 peptide and passive immunizations with anti-Aß42 antibodies were started in clinical trials. Active Aß42 peptide immunization in humans had led to an inflammatory autoimmune response, and the trial was stopped. Passive immunizations had shown some effects in slowing AD pathology. Active DNA Aß42 immunizations administered with the gene gun into the skin elicits a different immune response and is non-inflammatory. While in rodents, good responses had been found for this type of immunization, positive results in larger mammals are missing. We present here results from sixteen New Zealand White Rabbits, which underwent intradermal DNA Aß42 immunization via gene gun. The humoral immune response was analyzed from blood throughout the study, and cellular immune responses were determined from spleens at the end of the study. A good anti-Aß antibody response was found in the rabbit model. The T cell response after re-stimulation in cell culture showed no IFNγ producing cells when ELISPOT assays were analyzed from PBMC, but low numbers of IFNγ and IL-17 producing cells were found in ELISPOTS from spleens (both 5 immunizations). Brains from immunized rabbits showed no signs of encephalitis. Based on these results, DNA Aß42 immunization is highly likely to be safe and effective to test in a possible clinical AD prevention trial in patients.


Asunto(s)
Péptidos beta-Amiloides/inmunología , Fragmentos de Péptidos/inmunología , Vacunas de ADN/inmunología , Envejecimiento/inmunología , Envejecimiento/patología , Enfermedad de Alzheimer/inmunología , Animales , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Biolística , Encéfalo/inmunología , Encéfalo/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Epítopos de Linfocito B/inmunología , Femenino , Humanos , Inyecciones Intradérmicas , Masculino , Ratones Transgénicos , Placa Amiloide/metabolismo , Placa Amiloide/patología , Placa Amiloide/prevención & control , Conejos , Linfocitos T/inmunología , Vacunación , Vacunas de ADN/administración & dosificación , alfa-Sinucleína/metabolismo
15.
Nucl Med Biol ; 43(6): 333-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27260774

RESUMEN

INTRODUCTION: Squamous cell carcinoma (SCC) is the second most common form of skin cancer in the United States. The efficacy of a pharmaceutically elegant radiotherapeutic bandage, previously described by us for application against SCC of the skin, was tested for the first time in vivo using a subcutaneous SCC mouse model and a therapeutically relevant radiation dose. METHODS: Female athymic nude mice were injected with human Colo-16 SCC cells subcutaneously and after eight days (average tumor volume: 35±8.6mm(3)) received no treatment, or were exposed to non-radioactive or radioactive (92.5±18.5MBq) bandages for approximately 1h (n=10 per group). After treatment, tumors were measured over fifteen days, tumor volume ratios (TVRs) compared and histopathology performed. RESULTS: Fifteen days after treatment, the TVR of the radioactive bandage treatment group was 3.3±4.5, while TVRs of the non-radioactive bandage treatment and no treatment control groups were 33.2±14.7 and 26.9±12.6, respectively. At the time of necropsy, there was mild focal epidermal hyperplasia surrounding a small area of epidermal ulceration in the radioactive bandage group. No other examined tissue (i.e., muscle, liver, kidney, lung, spleen and heart) showed significant lesions. CONCLUSIONS: Our radiotherapeutic bandage exhibits promising efficacy against SCC of the skin in a mouse model. It can be individually tailored for easy application on tumor lesions of all shapes and sizes, and could complement or possibly replace surgery in the clinic.


Asunto(s)
Vendajes , Carcinoma de Células Escamosas/radioterapia , Neoplasias Cutáneas/radioterapia , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Humanos , Ratones , Riesgo , Neoplasias Cutáneas/patología
16.
Plast Reconstr Surg ; 134(3): 389e-401e, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25158716

RESUMEN

BACKGROUND: Exogenous cytokines, such as platelet-derived growth factor (PDGF)-B, can augment wound healing, but sustained delivery to maintain therapeutic levels remains a problem. "Genome editing" is a new technology in which precise genome modifications are made within cells using engineered site-specific nucleases. Genome editing avoids many of the complications associated with traditional gene therapy and the use of viral vectors, including random integration, imprecise gene expression, and inadvertent oncogene activation. METHODS: This study demonstrates site-specific nuclease-mediated integration of a PDGF-B transgene into a predefined locus within the genome of primary mouse fibroblasts. Engineered fibroblasts were applied to splinted mouse wounds and evaluated after 14 days and 5 months for the retention of engineered fibroblasts, wound healing morphology, angiogenesis, and systemic PDGF-B expression. RESULTS: The application of engineered PDGF-B-expressing fibroblasts enhanced wound healing compared with controls. Low-level, constitutive expression of PDGF-B was achieved without detectable levels of systemic PDGF-B. The mechanism of improved wound healing is, at least in part, the result of increased wound vascularization, as the wounds treated with PDGF-B fibroblasts had a blood vessel density 2.5 times greater than controls. After 5 months, the engineered fibroblasts persisted in the wound bed. No adverse effects were detected from the application of these fibroblasts after 5 months as assessed by hematoxylin and eosin staining of wounds and by mouse necropsy. CONCLUSIONS: These data support that site-specific genome editing allows for sustained cell-based cytokine delivery. Furthermore, sustained release of PDGF-B increases the speed and quality of wound healing after a single application.


Asunto(s)
Fibroblastos/metabolismo , Terapia Genética/métodos , Proteínas Proto-Oncogénicas c-sis/metabolismo , Cicatrización de Heridas/fisiología , Animales , Biomarcadores/metabolismo , Técnicas de Transferencia de Gen , Recombinación Homóloga , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Proto-Oncogénicas c-sis/genética , Transgenes
17.
Vet Clin Pathol ; 39(3): 386-90, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20698940

RESUMEN

A 9-year-old female spayed Shetland Sheepdog was presented to the Kansas State University Veterinary Medical Teaching Hospital for evaluation following a 3-week history of left rear limb lameness that had progressed to generalized ataxia. Multifocal or diffuse brain lesions were suspected based on physical examination findings. Cerebrospinal fluid (CSF) contained 52 nucleated cells/µL composed of mixed inflammatory cells. Treatment with prednisone and cyclosporine was initiated based on a presumptive diagnosis of granulomatous meningoencephalitis. Thirteen days later the dog was nonambulatory and mentally obtunded. Repeat CSF analysis revealed 298 nucleated cells/µL with 61% eosinophils. Rare protozoal tachyzoites consistent with Neospora caninum, Toxoplasma gondii, or Sarcocystis spp. were found extracellularly and within macrophages and an eosinophil. Despite cessation of prednisone and cyclosporine therapy and provision of supportive care, the dog died 6 days later. Examination of brain tissue sections revealed multifocally extensive, necrotizing, histiocytic, and lymphoplasmacytic meningoencephalitis with numerous protozoal zoites and cysts. Immunohistochemical analysis of brain tissue using a monoclonal antibody specific for N. caninum confirmed the diagnosis of neosporosis. Similar but less severe lesions were noted in the spinal cord, although organisms were not found. This case emphasizes the value of repeated CSF analysis when therapy is ineffective and the importance of excluding infectious causes of meningoencephalitis before commencement of immunosuppressive therapy.


Asunto(s)
Infecciones Protozoarias del Sistema Nervioso Central/veterinaria , Coccidiosis/veterinaria , Ciclosporina/efectos adversos , Enfermedades de los Perros/parasitología , Inmunosupresores/efectos adversos , Neospora , Prednisona/efectos adversos , Animales , Encéfalo/parasitología , Infecciones Protozoarias del Sistema Nervioso Central/inducido químicamente , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Coccidiosis/líquido cefalorraquídeo , Coccidiosis/inducido químicamente , Coccidiosis/parasitología , Ciclosporina/administración & dosificación , Ciclosporina/uso terapéutico , Enfermedades de los Perros/líquido cefalorraquídeo , Enfermedades de los Perros/inducido químicamente , Perros , Quimioterapia Combinada/efectos adversos , Quimioterapia Combinada/veterinaria , Femenino , Inmunosupresores/administración & dosificación , Prednisona/administración & dosificación , Prednisona/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA