RESUMEN
This study analyzes H2O and HDO vertical profiles in the Venus mesosphere using Venus Express/Solar Occultation in the InfraRed data. The findings show increasing H2O and HDO volume mixing ratios with altitude, with the D/H ratio rising significantly from 0.025 at ~70 km to 0.24 at ~108 km. This indicates an increase from 162 to 1,519 times the Earth's ratio within 40 km. The study explores two hypotheses for these results: isotopic fractionation from photolysis of H2O over HDO or from phase change processes. The latter, involving condensation and evaporation of sulfuric acid aerosols, as suggested by previous authors [X. Zhang et al., Nat. Geosci. 3, 834-837 (2010)], aligns more closely with the rapid changes observed. Vertical transport computations for H2O, HDO, and aerosols show water vapor downwelling and aerosols upwelling. We propose a mechanism where aerosols form in the lower mesosphere due to temperatures below the water condensation threshold, leading to deuterium-enriched aerosols. These aerosols ascend, evaporate at higher temperatures, and release more HDO than H2O, which are then transported downward. Moreover, this cycle may explain the SO2 increase in the upper mesosphere observed above 80 km. The study highlights two crucial implications. First, altitude variation is critical to determining the Venus deuterium and hydrogen reservoirs. Second, the altitude-dependent increase of the D/H ratio affects H and D escape rates. The photolysis of H2O and HDO at higher altitudes releases more D, influencing long-term D/H evolution. These findings suggest that evolutionary models should incorporate altitude-dependent processes for accurate D/H fractionation predictions.
RESUMEN
The surname of author Cathy Quantin-Nataf was misspelled 'Quantin-Nata', authors Ehouarn Millour and Roland Young were missing from the ACS and NOMAD Science Teams list, and minor changes have been made to the author and affiliation lists; see accompanying Amendment. These errors have been corrected online.
RESUMEN
The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today1. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations2-5. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere6,7, which-given methane's lifetime of several centuries-predicts an even, well mixed distribution of methane1,6,8. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections2,4. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally.
RESUMEN
NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS. We focus upon the optical design and working principle where two telescopes are coupled to a single grating spectrometer using a selector mechanism.
RESUMEN
The NOMAD instrument has been designed to best fulfil the science objectives of the ExoMars Trace Gas Orbiter mission that will be launched in 2016. The instrument is a combination of three channels that cover the UV, visible and IR spectral ranges and can perform solar occultation, nadir and limb observations. In this series of two papers, we present the optical models representing the three channels of the instrument and use them to determine signal to noise levels for different observation modes and Martian conditions. In this first part, we focus on the UVIS channel, which will sound the Martian atmosphere using nadir and solar occultation viewing modes, covering the 200-650nm spectral range. High SNR levels (>1000) can easily be reached for wavelengths higher than 300nm both in solar occultation and nadir modes when considering binning. Below 300nm SNR are lower primarily because of the lower signal and the impact of atmospheric absorption.
RESUMEN
The vertical opacity structure of the martian atmosphere is important for understanding the distribution of ice (water and carbon dioxide) and dust. We present a new data set of extinction opacity profiles from the NOMAD/UVIS spectrometer aboard the ExoMars Trace Gas Orbiter, covering one and a half Mars Years (MY) including the MY 34 Global Dust Storm and several regional dust storms. We discuss specific mesospheric cloud features and compare with existing literature and a Mars Global Climate Model (MGCM) run with data assimilation. Mesospheric opacity features, interpreted to be water ice, were present during the global and regional dust events and correlate with an elevated hygropause in the MGCM, providing evidence that regional dust storms can boost transport of vapor to mesospheric altitudes (with potential implications for atmospheric escape). The season of the dust storms also had an apparent impact on the resulting lifetime of the cloud features, with events earlier in the dusty season correlating with longer-lasting mesospheric cloud layers. Mesospheric opacity features were also present during the dusty season even in the absence of regional dust storms, and interpreted to be water ice based on previous literature. The assimilated MGCM temperature structure agreed well with the UVIS opacities, but the MGCM opacity field struggled to reproduce mesospheric ice features, suggesting a need for further development of water ice parameterizations. The UVIS opacity data set offers opportunities for further research into the vertical aerosol structure of the martian atmosphere, and for validation of how this is represented in numerical models.