Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 17(4): 406-13, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26950237

RESUMEN

The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.


Asunto(s)
Citocinas/inmunología , Endotoxemia/inmunología , Metabolismo Energético/inmunología , Tolerancia Inmunológica/inmunología , Inmunidad Innata/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Sepsis/inmunología , Adenosina Trifosfato/metabolismo , Adulto , Animales , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergilosis/inmunología , Aspergilosis/metabolismo , Candidiasis Invasiva/tratamiento farmacológico , Candidiasis Invasiva/inmunología , Candidiasis Invasiva/metabolismo , Endotoxemia/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Femenino , Glucólisis , Humanos , Immunoblotting , Interferón gamma/uso terapéutico , Ácido Láctico/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Monocitos/metabolismo , NAD/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Estudios Prospectivos , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Transcriptoma , Adulto Joven
2.
EMBO J ; 42(7): e108533, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36825437

RESUMEN

Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.


Asunto(s)
Mitocondrias , Proteínas , Humanos , Células HeLa , Sustancias Macromoleculares/metabolismo , Proteínas/metabolismo , Solventes/metabolismo , Mitocondrias/metabolismo
3.
J Med Genet ; 57(1): 23-30, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494578

RESUMEN

BACKGROUND: Idiopathic dilated cardiomyopathy (DCM) is recognised to be a heritable disorder, yet clinical genetic testing does not produce a diagnosis in >50% of paediatric patients. Identifying a genetic cause is crucial because this knowledge can affect management options, cardiac surveillance in relatives and reproductive decision-making. In this study, we sought to identify the underlying genetic defect in a patient born to consanguineous parents with rapidly progressive DCM that led to death in early infancy. METHODS AND RESULTS: Exome sequencing revealed a potentially pathogenic, homozygous missense variant, c.542G>T, p.(Gly181Val), in SOD2. This gene encodes superoxide dismutase 2 (SOD2) or manganese-superoxide dismutase, a mitochondrial matrix protein that scavenges oxygen radicals produced by oxidation-reduction and electron transport reactions occurring in mitochondria via conversion of superoxide anion (O2-·) into H2O2. Measurement of hydroethidine oxidation showed a significant increase in O2-· levels in the patient's skin fibroblasts, as compared with controls, and this was paralleled by reduced catalytic activity of SOD2 in patient fibroblasts and muscle. Lentiviral complementation experiments demonstrated that mitochondrial SOD2 activity could be completely restored on transduction with wild type SOD2. CONCLUSION: Our results provide evidence that defective SOD2 may lead to toxic increases in the levels of damaging oxygen radicals in the neonatal heart, which can result in rapidly developing heart failure and death. We propose SOD2 as a novel nuclear-encoded mitochondrial protein involved in severe human neonatal cardiomyopathy, thus expanding the wide range of genetic factors involved in paediatric cardiomyopathies.


Asunto(s)
Cardiomiopatía Dilatada/genética , Mutación Missense , Miocardio/patología , Superóxido Dismutasa/genética , Secuencia de Aminoácidos , Cardiomiopatía Dilatada/enzimología , Cardiomiopatía Dilatada/metabolismo , Secuencia Conservada , Análisis Mutacional de ADN , Femenino , Homocigoto , Humanos , Lactante , Recién Nacido , Mitocondrias/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , Linaje , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
4.
J Cell Sci ; 129(23): 4411-4423, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27793977

RESUMEN

Mitochondria play a central role in cellular energy production, and their dysfunction can trigger a compensatory increase in glycolytic flux to sustain cellular ATP levels. Here, we studied the mechanism of this homeostatic phenomenon in C2C12 myoblasts. Acute (30 min) mitoenergetic dysfunction induced by the mitochondrial inhibitors piericidin A and antimycin A stimulated Glut1-mediated glucose uptake without altering Glut1 (also known as SLC2A1) mRNA or plasma membrane levels. The serine/threonine liver kinase B1 (LKB1; also known as STK11) and AMP-activated protein kinase (AMPK) played a central role in this stimulation. In contrast, ataxia-telangiectasia mutated (ATM; a potential AMPK kinase) and hydroethidium (HEt)-oxidizing reactive oxygen species (ROS; increased in piericidin-A- and antimycin-A-treated cells) appeared not to be involved in the stimulation of glucose uptake. Treatment with mitochondrial inhibitors increased NAD+ and NADH levels (associated with a lower NAD+:NADH ratio) but did not affect the level of Glut1 acetylation. Stimulation of glucose uptake was greatly reduced by chemical inhibition of Sirt2 or mTOR-RAPTOR. We propose that mitochondrial dysfunction triggers LKB1-mediated AMPK activation, which stimulates Sirt2 phosphorylation, leading to activation of mTOR-RAPTOR and Glut1-mediated glucose uptake.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Metabolismo Energético/efectos de los fármacos , Glucosa/farmacología , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sirtuina 2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antioxidantes/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Activación Enzimática/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteína Reguladora Asociada a mTOR
5.
EMBO J ; 32(1): 9-29, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23149385

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI-CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce 'primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Complejos Multienzimáticos/genética , Mutación/genética , Enfermedades Neurodegenerativas/genética , Fosforilación Oxidativa , Animales , Núcleo Celular/genética , Humanos , Enfermedad de Leigh/genética , Mitocondrias/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo
6.
Biochim Biophys Acta ; 1853(7): 1606-14, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25827955

RESUMEN

Rotenone (ROT) is a widely used inhibitor of complex I (CI), the first complex of the mitochondrial oxidative phosphorylation (OXPHOS) system. However, particularly at high concentrations ROT was also described to display off-target effects. Here we studied how ROT affected in vitro primary murine myotube formation. We demonstrate that myotube formation is specifically inhibited by ROT (10-100nM), but not by piericidin A (PA; 100nM), another CI inhibitor. At 100nM, both ROT and PA fully blocked myoblast oxygen consumption. Knock-down of Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) and, to a lesser extent ROCK1, prevented the ROT-induced inhibition of myotube formation. Moreover, the latter was reversed by inhibiting Raf-1 activity. In contrast, ROT-induced inhibition of myotube formation was not prevented by knock-down of RhoA. Taken together, our results support a model in which ROT reduces primary myotube formation independent of its inhibitory effect on CI-driven mitochondrial ATP production, but via a mechanism primarily involving the Raf-1/ROCK2 pathway.


Asunto(s)
Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Rotenona/farmacología , Quinasas Asociadas a rho/metabolismo , Animales , Western Blotting , Diferenciación Celular/efectos de los fármacos , Fusión Celular , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Ratones Endogámicos C57BL , Modelos Biológicos , Fibras Musculares Esqueléticas/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos
7.
Biochim Biophys Acta ; 1847(6-7): 526-33, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25687896

RESUMEN

Mitochondrial ATP production is mediated by the oxidative phosphorylation (OXPHOS) system, which consists of four multi-subunit complexes (CI-CIV) and the FoF1-ATP synthase (CV). Mitochondrial disorders including Leigh Syndrome often involve CI dysfunction, the pathophysiological consequences of which still remain incompletely understood. Here we combined experimental and computational strategies to gain mechanistic insight into the energy metabolism of isolated skeletal muscle mitochondria from 5-week-old wild-type (WT) and CI-deficient NDUFS4-/- (KO) mice. Enzyme activity measurements in KO mitochondria revealed a reduction of 79% in maximal CI activity (Vmax), which was paralleled by 45-72% increase in Vmax of CII, CIII, CIV and citrate synthase. Mathematical modeling of mitochondrial metabolism predicted that these Vmax changes do not affect the maximal rates of pyruvate (PYR) oxidation and ATP production in KO mitochondria. This prediction was empirically confirmed by flux measurements. In silico analysis further predicted that CI deficiency altered the concentration of intermediate metabolites, modestly increased mitochondrial NADH/NAD+ ratio and stimulated the lower half of the TCA cycle, including CII. Several of the predicted changes were previously observed in experimental models of CI-deficiency. Interestingly, model predictions further suggested that CI deficiency only has major metabolic consequences when its activity decreases below 90% of normal levels, compatible with a biochemical threshold effect. Taken together, our results suggest that mouse skeletal muscle mitochondria possess a substantial CI overcapacity, which minimizes the effects of CI dysfunction on mitochondrial metabolism in this otherwise early fatal mouse model.


Asunto(s)
Adenosina Trifosfato/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Piruvatos/metabolismo , Animales , Biología Computacional , Complejo I de Transporte de Electrón/fisiología , Metabolismo Energético , Enfermedad de Leigh , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Teóricos , Oxidación-Reducción , Fosforilación Oxidativa , Consumo de Oxígeno
8.
Biochim Biophys Acta ; 1852(3): 529-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25536029

RESUMEN

Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined how primary human skin fibroblasts adapt to chronic CI inhibition. CI inhibition triggered transient and sustained changes in metabolism, redox homeostasis and mitochondrial (ultra)structure but no cell senescence/death. CI-inhibited cells consumed no oxygen and displayed minor mitochondrial depolarization, reverse-mode action of complex V, a slower proliferation rate and futile mitochondrial biogenesis. Adaptation was neither prevented by antioxidants nor associated with increased PGC1-α/SIRT1/mTOR levels. Survival of CI-inhibited cells was strictly glucose-dependent and accompanied by increased AMPK-α phosphorylation, which occurred without changes in ATP or cytosolic calcium levels. Conversely, cells devoid of AMPK-α died upon CI inhibition. Chronic CI inhibition did not increase mitochondrial superoxide levels or cellular lipid peroxidation and was paralleled by a specific increase in SOD2/GR, whereas SOD1/CAT/Gpx1/Gpx2/Gpx5 levels remained unchanged. Upon hormone stimulation, fully adapted cells displayed aberrant cytosolic and ER calcium handling due to hampered ATP fueling of ER calcium pumps. It is concluded that CI dysfunction triggers an adaptive program that depends on extracellular glucose and AMPK-α. This response avoids cell death by suppressing energy crisis, oxidative stress induction and substantial mitochondrial depolarization.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fibroblastos/enzimología , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Estrés Oxidativo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Animales , Calcio/metabolismo , Línea Celular Transformada , Supervivencia Celular/genética , Cloruros/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Fibroblastos/citología , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Adv Anat Embryol Cell Biol ; 219: 149-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27207366

RESUMEN

Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-content microscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Microscopía Fluorescente/métodos , Mitocondrias/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Células Eucariotas/efectos de los fármacos , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/instrumentación , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Flujo de Trabajo
10.
Biophys J ; 109(7): 1372-86, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26445438

RESUMEN

ATP can be produced in the cytosol by glycolytic conversion of glucose (GLC) into pyruvate. The latter can be metabolized into lactate, which is released by the cell, or taken up by mitochondria to fuel ATP production by the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS) system. Altering the balance between glycolytic and mitochondrial ATP generation is crucial for cell survival during mitoenergetic dysfunction, which is observed in a large variety of human disorders including cancer. To gain insight into the kinetic properties of this adaptive mechanism we determined here how acute (30 min) inhibition of OXPHOS affected cytosolic GLC homeostasis. GLC dynamics were analyzed in single living C2C12 myoblasts expressing the fluorescent biosensor FLII(12)Pglu-700µÎ´6 (FLII). Following in situ FLII calibration, the kinetic properties of GLC uptake (V1) and GLC consumption (V2) were determined independently and used to construct a minimal mathematical model of cytosolic GLC dynamics. After validating the model, it was applied to quantitatively predict V1 and V2 at steady-state (i.e., when V1 = V2 = Vsteady-state) in the absence and presence of OXPHOS inhibitors. Integrating model predictions with experimental data on lactate production, cell volume, and O2 consumption revealed that glycolysis and mitochondria equally contribute to cellular ATP production in control myoblasts. Inhibition of OXPHOS induced a twofold increase in Vsteady-state and glycolytic ATP production flux. Both in the absence and presence of OXPHOS inhibitors, GLC was consumed at near maximal rates, meaning that GLC consumption is rate-limiting under steady-state conditions. Taken together, we demonstrate here that OXPHOS inhibition increases steady-state GLC uptake and consumption in C2C12 myoblasts. This activation fully compensates for the reduction in mitochondrial ATP production, thereby maintaining the balance between cellular ATP supply and demand.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Glucosa/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Ciclo del Ácido Cítrico/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Cinética , Ratones , Mitocondrias/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología
11.
J Biol Chem ; 289(16): 11293-11303, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24616101

RESUMEN

Isoform 3 of the Na(+)-Ca(2+) exchanger (NCX3) is crucial for maintaining intracellular calcium ([Ca(2+)]i) homeostasis in excitable tissues. In this sense NCX3 plays a key role in neuronal excitotoxicity and Ca(2+) extrusion during skeletal muscle relaxation. Alternative splicing generates two variants (NCX3-AC and NCX3-B). Here, we demonstrated that NCX3 variants display a tissue-specific distribution in mice, with NCX3-B as mostly expressed in brain and NCX-AC as predominant in skeletal muscle. Using Fura-2-based Ca(2+) imaging, we measured the capacity and regulation of the two variants during Ca(2+) extrusion and uptake in different conditions. Functional studies revealed that, although both variants are activated by intracellular sodium ([Na(+)]i), NCX3-AC has a higher [Na(+)]i sensitivity, as Ca(2+) influx is observed in the presence of extracellular Na(+). This effect could be partially mimicked for NCX3-B by mutating several glutamate residues in its cytoplasmic loop. In addition, NCX3-AC displayed a higher capacity of both Ca(2+) extrusion and uptake compared with NCX3-B, together with an increased sensitivity to intracellular Ca(2+). Strikingly, substitution of Glu(580) in NCX3-B with its NCX3-AC equivalent Lys(580) recapitulated the functional properties of NCX3-AC regarding Ca(2+) sensitivity, Lys(580) presumably acting through a structure stabilization of the Ca(2+) binding site. The higher Ca(2+) uptake capacity of NCX3-AC compared with NCX3-B is in line with the necessity to restore Ca(2+) levels in the sarcoplasmic reticulum during prolonged exercise. The latter result, consistent with the high expression in the slow-twitch muscle, suggests that this variant may contribute to the Ca(2+) handling beyond that of extruding Ca(2+).


Asunto(s)
Encéfalo/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Empalme Alternativo/fisiología , Sustitución de Aminoácidos , Animales , Encéfalo/citología , Calcio/metabolismo , Células HEK293 , Humanos , Ratones , Fibras Musculares de Contracción Lenta/citología , Proteínas Musculares/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Intercambiador de Sodio-Calcio/genética
12.
Biochim Biophys Acta ; 1837(8): 1247-56, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24769419

RESUMEN

The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI-CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (ΔpH) and electrical charge (Δψ) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping. Enigmatically, at the cellular level genetic or inhibitor-induced CI dysfunction has been associated with Δψ depolarization or hyperpolarization. The cellular mechanism of the latter is still incompletely understood. Here we demonstrate that chronic (24h) CI inhibition in HEK293 cells induces a proton-based Δψ hyperpolarization in HEK293 cells without triggering reverse-mode action of CV or the adenine nucleotide translocase (ANT). Hyperpolarization was associated with low levels of CII-driven O2 consumption and prevented by co-inhibition of CII, CIII or CIV activity. In contrast, chronic CIII inhibition triggered CV reverse-mode action and induced Δψ depolarization. CI- and CIII-inhibition similarly reduced free matrix ATP levels and increased the cell's dependence on extracellular glucose to maintain cytosolic free ATP. Our findings support a model in which Δψ hyperpolarization in CI-inhibited cells results from low activity of CII, CIII and CIV, combined with reduced forward action of CV and ANT.


Asunto(s)
Respiración de la Célula/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Complejo I de Transporte de Electrón/química , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/genética , Membranas Mitocondriales/química , Fosforilación Oxidativa
13.
Hum Mol Genet ; 22(4): 656-67, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23125284

RESUMEN

The mitochondrial respiratory chain complex IV (cytochrome c oxidase) is a multi-subunit enzyme that transfers electrons from cytochrome c to molecular oxygen, yielding water. Its biogenesis requires concerted expression of mitochondria- and nuclear-encoded subunits and assembly factors. In this report, we describe a homozygous missense mutation in FAM36A from a patient who displays ataxia and muscle hypotonia. The FAM36A gene is a remote, putative ortholog of the fungal complex IV assembly factor COX20. Messenger RNA (mRNA) and protein co-expression analyses support the involvement of FAM36A in complex IV function in mammals. The c.154A>C mutation in the FAM36A gene, a mutation that is absent in sequenced exomes, leads to a reduced activity and lower levels of complex IV and its protein subunits. The FAM36A protein is nearly absent in patient's fibroblasts. Cells affected by the mutation accumulate subassemblies of complex IV that contain COX1 but are almost devoid of COX2 protein. We observe co-purification of FAM36A and COX2 proteins, supporting that the FAM36A defect hampers the early step of complex IV assembly at the incorporation of the COX2 subunit. Lentiviral complementation of patient's fibroblasts with wild-type FAM36A increases the complex IV activity as well as the amount of holocomplex IV and of individual subunits. These results establish the function of the human gene FAM36A/COX20 in complex IV assembly and support a causal role of the gene in complex IV deficiency.


Asunto(s)
Anomalías Múltiples/genética , Ataxia/genética , Deficiencia de Citocromo-c Oxidasa/genética , Canales Iónicos/genética , Hipotonía Muscular/genética , Multimerización de Proteína , Anomalías Múltiples/metabolismo , Secuencia de Aminoácidos , Animales , Ataxia/metabolismo , Secuencia de Bases , Células Cultivadas , Niño , Consanguinidad , Deficiencia de Citocromo-c Oxidasa/metabolismo , Análisis Mutacional de ADN , Complejo IV de Transporte de Electrones/metabolismo , Expresión Génica , Humanos , Canales Iónicos/metabolismo , Ácido Láctico/sangre , Ácido Láctico/líquido cefalorraquídeo , Masculino , Proteínas de la Membrana/genética , Ratones , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Hipotonía Muscular/metabolismo , Mutación Missense , Proteínas de Saccharomyces cerevisiae/genética
14.
Arch Toxicol ; 89(8): 1209-26, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26047665

RESUMEN

Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans.


Asunto(s)
Glucosa/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos
15.
Proc Natl Acad Sci U S A ; 108(21): 8657-62, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21555543

RESUMEN

Intracellular chemical reactions generally constitute reaction-diffusion systems located inside nanostructured compartments like the cytosol, nucleus, endoplasmic reticulum, Golgi, and mitochondrion. Understanding the properties of such systems requires quantitative information about solute diffusion. Here we present a novel approach that allows determination of the solvent-dependent solute diffusion constant (D(solvent)) inside cell compartments with an experimentally quantifiable nanostructure. In essence, our method consists of the matching of synthetic fluorescence recovery after photobleaching (FRAP) curves, generated by a mathematical model with a realistic nanostructure, and experimental FRAP data. As a proof of principle, we assessed D(solvent) of a monomeric fluorescent protein (AcGFP1) and its tandem fusion (AcGFP1(2)) in the mitochondrial matrix of HEK293 cells. Our results demonstrate that diffusion of both proteins is substantially slowed by barriers in the mitochondrial matrix (cristae), suggesting that cells can control the dynamics of biochemical reactions in this compartment by modifying its nanostructure.


Asunto(s)
Mitocondrias/ultraestructura , Proteínas/metabolismo , Compartimento Celular , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Cinética , Mitocondrias/metabolismo , Nanoestructuras/ultraestructura , Soluciones
16.
J Biol Chem ; 287(50): 41851-60, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23038253

RESUMEN

Studies employing native PAGE suggest that most nDNA-encoded CI subunits form subassemblies before assembling into holo-CI. In addition, in vitro evidence suggests that some subunits can directly exchange in holo-CI. Presently, data on the kinetics of these two incorporation modes for individual CI subunits during CI maintenance are sparse. Here, we used inducible HEK293 cell lines stably expressing AcGFP1-tagged CI subunits and quantified the amount of tagged subunit in mitoplasts and holo-CI by non-native and native PAGE, respectively, to determine their CI incorporation efficiency. Analysis of time courses of induction revealed three subunit-specific patterns. A first pattern, represented by NDUFS1, showed overlapping time courses, indicating that imported subunits predominantly incorporate into holo-CI. A second pattern, represented by NDUFV1, consisted of parallel time courses, which were, however, not quantitatively overlapping, suggesting that imported subunits incorporate at similar rates into holo-CI and CI assembly intermediates. The third pattern, represented by NDUFS3 and NDUFA2, revealed a delayed incorporation into holo-CI, suggesting their prior appearance in CI assembly intermediates and/or as free monomers. Our analysis showed the same maximum incorporation into holo-CI for NDUFV1, NDUFV2, NDUFS1, NDUFS3, NDUFS4, NDUFA2, and NDUFA12 with nearly complete loss of endogenous subunit at 24 h of induction, indicative of an equimolar stoichiometry and unexpectedly rapid turnover. In conclusion, the results presented demonstrate that newly formed nDNA-encoded CI subunits rapidly incorporate into holo-CI in a subunit-specific manner.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Homeostasis/fisiología , Proteínas Mitocondriales/metabolismo , Subunidades de Proteína/metabolismo , Animales , Cricetinae , Cricetulus , Complejo I de Transporte de Electrón/genética , Células HEK293 , Humanos , Cinética , Proteínas Mitocondriales/genética , Subunidades de Proteína/genética
17.
Biochim Biophys Acta ; 1817(10): 1925-36, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22430089

RESUMEN

Human mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice. Mitochondria from KO cells lacked the NDUFS4 protein and mitoplasts displayed virtually no CI activity, moderately reduced CII, CIII and CIV activities and normal citrate synthase and CV (F(o)F(1)-ATPase) activity. Native electrophoresis of KO cell mitochondrial fractions revealed two distinct CI subcomplexes of ~830kDa (enzymatically inactive) and ~200kDa (active). The level of fully-assembled CII-CV was not affected by NDUFS4 gene deletion. KO cells exhibited a moderately reduced maximal and routine O(2) consumption, which was fully inhibited by acute application of the CI inhibitor rotenone. The aberrant CI assembly and reduced O(2) consumption in KO cells were fully normalized by NDUFS4 gene complementation. Cellular [NAD(+)]/[NADH] ratio, lactate production and mitochondrial tetramethyl rhodamine methyl ester (TMRM) accumulation were slightly increased in KO cells. In contrast, NDUFS4 gene deletion did not detectably alter [NADP(+)]/[NADPH] ratio, cellular glucose consumption, the protein levels of hexokinases (I and II) and phosphorylated pyruvate dehydrogenase (P-PDH), total cellular adenosine triphosphate (ATP) level, free cytosolic [ATP], cell growth rate, and reactive oxygen species (ROS) levels. We conclude that the NDUFS4 subunit is of key importance in CI stabilization and that, due to the metabolic properties of the immortalized MEFs, NDUFS4 gene deletion has only modest effects at the live cell level. This article is part of a special issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Embrión de Mamíferos/enzimología , Fibroblastos/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Transformada , Complejo I de Transporte de Electrón/genética , Embrión de Mamíferos/citología , Estabilidad de Enzimas/fisiología , Fibroblastos/citología , Eliminación de Gen , Humanos , Ácido Láctico/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , NAD/genética , NAD/metabolismo , NADP/genética , NADP/metabolismo , Fosforilación/fisiología , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo
18.
J Cell Sci ; 124(Pt 7): 1115-25, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21385841

RESUMEN

Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the role of PINK1 in mitochondrial and cellular functioning in physiological conditions is still incompletely understood. Here, we investigate mitochondrial and cellular calcium (Ca(2+)) homeostasis in PINK1-knockdown and PINK1-knockout mouse cells, both in basal metabolic conditions and after physiological stimulation, using unbiased automated live single-cell imaging in combination with organelle-specific fluorescent probes. Our data reveal that depletion of PINK1 induces moderate fragmentation of the mitochondrial network, mitochondrial membrane depolarization and increased production of reactive oxygen species. This results in reduced uptake of Ca(2+) by mitochondria after physiological stimulation. As a consequence, cells with knockdown or knockout of PINK1 display impaired mitochondrial ATP synthesis, which is exacerbated under conditions of increased ATP demand, thereby affecting cytosolic Ca(2+) extrusion. The impairment in energy maintenance was confirmed in the brain of PINK1-knockout mice by in vivo bioluminescence imaging. Our findings demonstrate a key role for PINK1 in the regulation of mitochondrial homeostasis and energy metabolism under physiological conditions.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Enfermedad de Parkinson/enzimología , Proteínas Quinasas/deficiencia , Adenosina Trifosfato/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo
19.
IUBMB Life ; 65(3): 202-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23378164

RESUMEN

To allow the rational design of effective treatment strategies for human mitochondrial disorders, a proper understanding of their biochemical and pathophysiological aspects is required. The development and evaluation of these strategies require suitable model systems. In humans, inherited complex I (CI) deficiency is one of the most common deficiencies of the mitochondrial oxidative phosphorylation system. During the last decade, various cellular and animal models of CI deficiency have been presented involving mutations and/or deletion of the Ndufs4 gene, which encodes the NDUFS4 subunit of CI. In this review, we discuss these models and their validity for studying human CI deficiency.


Asunto(s)
Enfermedades Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , Subunidades de Proteína/genética , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Exones , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Modelos Biológicos , NADH Deshidrogenasa/metabolismo , Fosforilación Oxidativa , Subunidades de Proteína/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166808, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37454773

RESUMEN

Ionic calcium (Ca2+) is a key messenger in signal transduction and its mitochondrial uptake plays an important role in cell physiology. This uptake is mediated by the mitochondrial Ca2+ uniporter (MCU), which is regulated by EMRE (essential MCU regulator) encoded by the SMDT1 (single-pass membrane protein with aspartate rich tail 1) gene. This work presents the genetic, clinical and cellular characterization of two patients harbouring SMDT1 variants and presenting with muscle problems. Analysis of patient fibroblasts and complementation experiments demonstrated that these variants lead to absence of EMRE protein, induce MCU subcomplex formation and impair mitochondrial Ca2+ uptake. However, the activity of oxidative phosphorylation enzymes, mitochondrial morphology and membrane potential, as well as routine/ATP-linked respiration were not affected. We hypothesize that the muscle-related symptoms in the SMDT1 patients result from aberrant mitochondrial Ca2+ uptake.


Asunto(s)
Canales de Calcio , Calcio , Humanos , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Transporte Iónico , Mitocondrias/genética , Mitocondrias/metabolismo , Músculos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA