Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32649862

RESUMEN

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Asunto(s)
Daño del ADN , Redes Reguladoras de Genes/fisiología , Aminoquinolinas/farmacología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Ratones , Ácidos Picolínicos/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
2.
Mol Cell ; 83(2): 160-162, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36669476

RESUMEN

In this issue of Molecular Cell, Rotheneder et al.1 elucidate the eukaroytic Mre11-Rad50-Nbs1 (MRN) complex quaternary architecture, which together with cryo-EM structures of bacterial Mre11-Rad50-DNA complexes,2 resolves the basis for MRN assembly and its broad nuclease specificity regulating DNA double-strand break repair.


Asunto(s)
Proteínas de Ciclo Celular , Enzimas Reparadoras del ADN , Proteína Homóloga de MRE11/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reparación del ADN , ADN/genética , Ácido Anhídrido Hidrolasas/genética
3.
Mol Cell ; 83(20): 3692-3706.e5, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37832548

RESUMEN

The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , ARN , Humanos , ARN/genética , Microscopía por Crioelectrón , ARN Helicasas/genética , ARN Helicasas/química , Enzimas Multifuncionales/genética , ADN/genética , Homeostasis , ADN Helicasas/genética
4.
Mol Cell ; 78(6): 1152-1165.e8, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32516598

RESUMEN

The APEX2 gene encodes APE2, a nuclease related to APE1, the apurinic/apyrimidinic endonuclease acting in base excision repair. Loss of APE2 is lethal in cells with mutated BRCA1 or BRCA2, making APE2 a prime target for homologous recombination-defective cancers. However, because the function of APE2 in DNA repair is poorly understood, it is unclear why BRCA-deficient cells require APE2 for viability. Here we present the genetic interaction profiles of APE2, APE1, and TDP1 deficiency coupled to biochemical and structural dissection of APE2. We conclude that the main role of APE2 is to reverse blocked 3' DNA ends, problematic lesions that preclude DNA synthesis. Our work also suggests that TOP1 processing of genomic ribonucleotides is the main source of 3'-blocking lesions relevant to APEX2-BRCA1/2 synthetic lethality. The exquisite sensitivity of BRCA-deficient cells to 3' blocks indicates that they represent a tractable vulnerability in homologous recombination-deficient tumor cells.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Enzimas Multifuncionales/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Línea Celular , ADN/metabolismo , Daño del ADN , Reparación del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas/genética , Genes BRCA1/fisiología , Humanos , Enzimas Multifuncionales/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo
5.
Cell ; 145(2): 171-2, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21496637

RESUMEN

In this issue, Orans et al. (2011) and Tsutakawa et al. (2011) report exciting insights into the molecular principles governing diverse endo- and exonucleolytic cleavage specificities of members of the RAD2/FEN superfamily of nucleases, which have critical roles in DNA replication and maintenance.

6.
Nucleic Acids Res ; 51(18): 9716-9732, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37592734

RESUMEN

The homodimeric PolG2 accessory subunit of the mitochondrial DNA polymerase gamma (Pol γ) enhances DNA binding and processive DNA synthesis by the PolG catalytic subunit. PolG2 also directly binds DNA, although the underlying molecular basis and functional significance are unknown. Here, data from Atomic Force Microscopy (AFM) and X-ray structures of PolG2-DNA complexes define dimeric and hexameric PolG2 DNA binding modes. Targeted disruption of PolG2 DNA-binding interfaces impairs processive DNA synthesis without diminishing Pol γ subunit affinities. In addition, a structure-specific DNA-binding role for PolG2 oligomers is supported by X-ray structures and AFM showing that oligomeric PolG2 localizes to DNA crossings and targets forked DNA structures resembling the mitochondrial D-loop. Overall, data indicate that PolG2 DNA binding has both PolG-dependent and -independent functions in mitochondrial DNA replication and maintenance, which provide new insight into molecular defects associated with PolG2 disruption in mitochondrial disease.


Asunto(s)
ADN Polimerasa gamma , ADN Mitocondrial , Humanos , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , Replicación del ADN/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo
7.
Cell ; 139(1): 87-99, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19804755

RESUMEN

The Nijmegen breakage syndrome 1 (Nbs1) subunit of the Mre11-Rad50-Nbs1 (MRN) complex protects genome integrity by coordinating double-strand break (DSB) repair and checkpoint signaling through undefined interactions with ATM, MDC1, and Sae2/Ctp1/CtIP. Here, fission yeast and human Nbs1 structures defined by X-ray crystallography and small angle X-ray scattering (SAXS) reveal Nbs1 cardinal features: fused, extended, FHA-BRCT(1)-BRCT(2) domains flexibly linked to C-terminal Mre11- and ATM-binding motifs. Genetic, biochemical, and structural analyses of an Nbs1-Ctp1 complex show Nbs1 recruits phosphorylated Ctp1 to DSBs via binding of the Nbs1 FHA domain to a Ctp1 pThr-Asp motif. Nbs1 structures further identify an extensive FHA-BRCT interface, a bipartite MDC1-binding scaffold, an extended conformational switch, and the molecular consequences associated with cancer predisposing Nijmegen breakage syndrome mutations. Tethering of Ctp1 to a flexible Nbs1 arm suggests a mechanism for restricting DNA end processing and homologous recombination activities of Sae2/Ctp1/CtIP to the immediate vicinity of DSBs.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Reparación del ADN , Proteínas Nucleares/química , Proteínas de Schizosaccharomyces pombe/química , Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11 , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Cell ; 135(7): 1169-71, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-19109888

RESUMEN

Packaging of viral genomes into virus capsids requires powerful motors to overcome the repulsive force that builds as the nucleic acids are compressed. Through structural analyses of the T4 bacteriophage packaging motor gp17, Sun et al. (2008) now propose a packaging mechanism in which electrostatic forces cause the motor to alternate between tensed and relaxed conformational states.


Asunto(s)
Bacteriófago T4/metabolismo , Empaquetamiento del ADN , Proteínas Virales/química , Proteínas Virales/metabolismo , Ensamble de Virus
9.
Cell ; 135(1): 97-109, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18854158

RESUMEN

Mre11 forms the core of the multifunctional Mre11-Rad50-Nbs1 (MRN) complex that detects DNA double-strand breaks (DSBs), activates the ATM checkpoint kinase, and initiates homologous recombination (HR) repair of DSBs. To define the roles of Mre11 in both DNA bridging and nucleolytic processing during initiation of DSB repair, we combined small-angle X-ray scattering (SAXS) and crystal structures of Pyrococcus furiosus Mre11 dimers bound to DNA with mutational analyses of fission yeast Mre11. The Mre11 dimer adopts a four-lobed U-shaped structure that is critical for proper MRN complex assembly and for binding and aligning DNA ends. Further, mutations blocking Mre11 endonuclease activity impair cell survival after DSB induction without compromising MRN complex assembly or Mre11-dependant recruitment of Ctp1, an HR factor, to DSBs. These results show how Mre11 dimerization and nuclease activities initiate repair of DSBs and collapsed replication forks, as well as provide a molecular foundation for understanding cancer-causing Mre11 mutations in ataxia telangiectasia-like disorder (ATLD).


Asunto(s)
Proteínas Arqueales/metabolismo , Reparación del ADN , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Pyrococcus furiosus/química , Proteínas Arqueales/química , Proteínas Arqueales/genética , Cristalografía por Rayos X , ADN/química , Roturas del ADN de Doble Cadena , Análisis Mutacional de ADN , Dimerización , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Modelos Moleculares , Dispersión del Ángulo Pequeño , Schizosaccharomyces/genética , Técnicas del Sistema de Dos Híbridos , Difracción de Rayos X
10.
Nucleic Acids Res ; 49(3): 1619-1630, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33444456

RESUMEN

Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.


Asunto(s)
ADN Ligasa (ATP)/química , ADN Ligasa (ATP)/genética , Mutación , Enfermedades de Inmunodeficiencia Primaria/genética , Sitios de Unión , ADN/metabolismo , ADN Ligasa (ATP)/metabolismo , Humanos , Ligandos , Magnesio/química , Modelos Moleculares , Pliegue de Proteína , Síndrome
11.
EMBO J ; 37(14)2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29934293

RESUMEN

The failure of DNA ligases to complete their catalytic reactions generates cytotoxic adenylated DNA strand breaks. The APTX RNA-DNA deadenylase protects genome integrity and corrects abortive DNA ligation arising during ribonucleotide excision repair and base excision DNA repair, and APTX human mutations cause the neurodegenerative disorder ataxia with oculomotor ataxia 1 (AOA1). How APTX senses cognate DNA nicks and is inactivated in AOA1 remains incompletely defined. Here, we report X-ray structures of APTX engaging nicked RNA-DNA substrates that provide direct evidence for a wedge-pivot-cut strategy for 5'-AMP resolution shared with the alternate 5'-AMP processing enzymes POLß and FEN1. Our results uncover a DNA-induced fit mechanism regulating APTX active site loop conformations and assembly of a catalytically competent active center. Further, based on comprehensive biochemical, X-ray and solution NMR results, we define a complex hierarchy for the differential impacts of the AOA1 mutational spectrum on APTX structure and activity. Sixteen AOA1 variants impact APTX protein stability, one mutation directly alters deadenylation reaction chemistry, and a dominant AOA1 variant unexpectedly allosterically modulates APTX active site conformations.


Asunto(s)
Roturas del ADN de Cadena Simple , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , ARN/química , ARN/metabolismo
12.
Nucleic Acids Res ; 48(11): 6310-6325, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32356875

RESUMEN

Tyrosyl-DNA phosphodiesterase 2 (TDP2) reverses Topoisomerase 2 DNA-protein crosslinks (TOP2-DPCs) in a direct-reversal pathway licensed by ZATTZNF451 SUMO2 E3 ligase and SUMOylation of TOP2. TDP2 also binds ubiquitin (Ub), but how Ub regulates TDP2 functions is unknown. Here, we show that TDP2 co-purifies with K63 and K27 poly-Ubiquitinated cellular proteins independently of, and separately from SUMOylated TOP2 complexes. Poly-ubiquitin chains of ≥ Ub3 stimulate TDP2 catalytic activity in nuclear extracts and enhance TDP2 binding of DNA-protein crosslinks in vitro. X-ray crystal structures and small-angle X-ray scattering analysis of TDP2-Ub complexes reveal that the TDP2 UBA domain binds K63-Ub3 in a 1:1 stoichiometric complex that relieves a UBA-regulated autoinhibitory state of TDP2. Our data indicates that that poly-Ub regulates TDP2-catalyzed TOP2-DPC removal, and TDP2 single nucleotide polymorphisms can disrupt the TDP2-Ubiquitin interface.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Ubiquitina/metabolismo , Sitios de Unión/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Modelos Moleculares , Mutación , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Poliubiquitina/química , Poliubiquitina/genética , Poliubiquitina/metabolismo , Unión Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Especificidad por Sustrato , Sumoilación , Ubiquitina/química , Ubiquitina/genética
13.
J Biol Chem ; 295(46): 15566-15575, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32878989

RESUMEN

The NEIL3 DNA glycosylase maintains genome integrity during replication by excising oxidized bases from single-stranded DNA (ssDNA) and unhooking interstrand cross-links (ICLs) at fork structures. In addition to its N-terminal catalytic glycosylase domain, NEIL3 contains two tandem C-terminal GRF-type zinc fingers that are absent in the other NEIL paralogs. ssDNA binding by the GRF-ZF motifs helps recruit NEIL3 to replication forks converged at an ICL, but the nature of DNA binding and the effect of the GRF-ZF domain on catalysis of base excision and ICL unhooking is unknown. Here, we show that the tandem GRF-ZFs of NEIL3 provide affinity and specificity for DNA that is greater than each individual motif alone. The crystal structure of the GRF domain shows that the tandem ZF motifs adopt a flexible head-to-tail configuration well-suited for binding to multiple ssDNA conformations. Functionally, we establish that the NEIL3 GRF domain inhibits glycosylase activity against monoadducts and ICLs. This autoinhibitory activity contrasts GRF-ZF domains of other DNA-processing enzymes, which typically use ssDNA binding to enhance catalytic activity, and suggests that the C-terminal region of NEIL3 is involved in both DNA damage recruitment and enzymatic regulation.


Asunto(s)
ADN de Cadena Simple/metabolismo , N-Glicosil Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/química , Humanos , Ratones , N-Glicosil Hidrolasas/antagonistas & inhibidores , N-Glicosil Hidrolasas/genética , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Dedos de Zinc
14.
Cell Mol Life Sci ; 77(1): 1-2, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31712993

RESUMEN

DNA strand breaks present a complex challenge for our cells, and the integrity of the DNA damage response machinery is critical for preventing cancer, premature aging, and neurodegenerative syndromes amongst other ailments. This multi-author review issue presents emerging topics relevant to understanding the fundamental structural mechanisms of DNA strand break sensing, signaling, and repair.


Asunto(s)
Roturas del ADN , Reparación del ADN , Animales , ADN/genética , Inestabilidad Genómica , Humanos , Neoplasias/genética
15.
Cell Mol Life Sci ; 77(1): 81-91, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31728578

RESUMEN

The compaction of DNA and the continuous action of DNA transactions, including transcription and DNA replication, create complex DNA topologies that require Type IIA Topoisomerases, which resolve DNA topological strain and control genome dynamics. The human TOP2 enzymes catalyze their reactions via formation of a reversible covalent enzyme DNA-protein crosslink, the TOP2 cleavage complex (TOP2cc). Spurious interactions of TOP2 with DNA damage, environmental toxicants and chemotherapeutic "poisons" perturbs the TOP2 reaction cycle, leading to an accumulation of DNA-protein crosslinks, and ultimately, genomic instability and cell death. Emerging evidence shows that TOP2-DNA protein crosslink (DPC) repair entails multiple strand break repair activities, such as removal of the poisoned TOP2 protein and rejoining of the DNA ends through homologous recombination (HR) or non-homologous end joining (NHEJ). Herein, we discuss the molecular mechanisms of TOP2-DPC resolution, with specific emphasis on the recently uncovered ZATTZnf451-licensed TDP2-catalyzed TOP2-DPC reversal mechanism.


Asunto(s)
Roturas del ADN , Reparación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Animales , ADN/química , ADN/genética , ADN-Topoisomerasas de Tipo II/química , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/química , Conformación Proteica , Sumoilación , Factores de Transcripción/química , Factores de Transcripción/metabolismo
16.
J Biol Chem ; 294(9): 3312-3320, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626735

RESUMEN

The Ctp1 protein in Schizosaccharomyces pombe is essential for DNA double-strand break (DSB) repair by homologous recombination. Fission yeast Ctp1 and its budding yeast (Sae2) and human (CtIP) homologs control Mre11-Rad50-Nbs1 nuclease complex activity and harbor DNA-binding and -bridging activities. However, the molecular basis for Ctp1-DNA transactions remains undefined. Here, we report atomic force microscopy (AFM) imaging of S. pombe Ctp1-DNA complexes revealing that Ctp1 polymerizes on dsDNA molecules and forms synaptic filaments that bridge two dsDNA strands. We observed that Ctp1 DNA filaments are typified by an average filament length of ∼180 bp of dsDNA and a Ctp1 tetramer footprint of ∼15 bp. Biochemical results characterizing Ctp1 variants with impaired DNA-binding or -bridging properties were consistent with Ctp1-mediated DNA bridging requiring the intact and correctly folded Ctp1 tetramer. Furthermore, mutations altering Ctp1 oligomerization and DNA bridging in vitro conferred cell sensitivity to DSB-producing agents. Together, these results support an important role for Ctp1-regulated DNA strand coordination required for DNA DSB repair in S. pombe.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Genoma Fúngico/genética , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
17.
Nature ; 506(7486): 111-5, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24362567

RESUMEN

Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA-DNA, and acting in an RNA-DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure-function studies of human APTX-RNA-DNA-AMP-Zn complexes define a mechanism for detecting and reversing adenylation at RNA-DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA-DNA may contribute to neurological disease.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Genoma Humano/genética , Proteínas Nucleares/metabolismo , ARN/metabolismo , Adenosina Monofosfato/metabolismo , Apraxias/genética , Ataxia Telangiectasia/genética , Supervivencia Celular , Ataxia Cerebelosa/congénito , ADN/química , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Humanos , Hipoalbuminemia/genética , Modelos Moleculares , Mutación/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Conformación Proteica , Pliegue de Proteína , ARN/química , Ribonucleasa H/metabolismo , Puntos de Control de la Fase S del Ciclo Celular , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Relación Estructura-Actividad , Zinc/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(2): 304-309, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028224

RESUMEN

The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3'-5' nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3'-5' exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.


Asunto(s)
Daño del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Estrés Oxidativo/genética , Animales , ADN Glicosilasas/metabolismo , Reparación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Endonucleasas/metabolismo , Dominios Proteicos/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
19.
EMBO J ; 33(5): 482-500, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24493214

RESUMEN

The Mre11-Rad50 complex is highly conserved, yet the mechanisms by which Rad50 ATP-driven states regulate the sensing, processing and signaling of DNA double-strand breaks are largely unknown. Here we design structure-based mutations in Pyrococcus furiosus Rad50 to alter protein core plasticity and residues undergoing ATP-driven movements within the catalytic domains. With this strategy we identify Rad50 separation-of-function mutants that either promote or destabilize the ATP-bound state. Crystal structures, X-ray scattering, biochemical assays, and functional analyses of mutant PfRad50 complexes show that the ATP-induced 'closed' conformation promotes DNA end binding and end tethering, while hydrolysis-induced opening is essential for DNA resection. Reducing the stability of the ATP-bound state impairs DNA repair and Tel1 (ATM) checkpoint signaling in Schizosaccharomyces pombe, double-strand break resection in Saccharomyces cerevisiae, and ATM activation by human Mre11-Rad50-Nbs1 in vitro, supporting the generality of the P. furiosus Rad50 structure-based mutational analyses. These collective results suggest that ATP-dependent Rad50 conformations switch the Mre11-Rad50 complex between DNA tethering, ATM signaling, and 5' strand resection, revealing molecular mechanisms regulating responses to DNA double-strand breaks.


Asunto(s)
Adenosina Trifosfato/metabolismo , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Pyrococcus furiosus/metabolismo , Ciclo Celular , Cristalografía por Rayos X , Análisis Mutacional de ADN , Enzimas Reparadoras del ADN/genética , Hidrólisis , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Pyrococcus furiosus/genética , Pyrococcus furiosus/crecimiento & desarrollo , Pyrococcus furiosus/fisiología , Transducción de Señal , Difracción de Rayos X
20.
Nucleic Acids Res ; 44(8): 3829-44, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27060144

RESUMEN

Mammalian Tyrosyl-DNA phosphodiesterase 2 (Tdp2) reverses Topoisomerase 2 (Top2) DNA-protein crosslinks triggered by Top2 engagement of DNA damage or poisoning by anticancer drugs. Tdp2 deficiencies are linked to neurological disease and cellular sensitivity to Top2 poisons. Herein, we report X-ray crystal structures of ligand-free Tdp2 and Tdp2-DNA complexes with alkylated and abasic DNA that unveil a dynamic Tdp2 active site lid and deep substrate binding trench well-suited for engaging the diverse DNA damage triggers of abortive Top2 reactions. Modeling of a proposed Tdp2 reaction coordinate, combined with mutagenesis and biochemical studies support a single Mg(2+)-ion mechanism assisted by a phosphotyrosyl-arginine cation-π interface. We further identify a Tdp2 active site SNP that ablates Tdp2 Mg(2+) binding and catalytic activity, impairs Tdp2 mediated NHEJ of tyrosine blocked termini, and renders cells sensitive to the anticancer agent etoposide. Collectively, our results provide a structural mechanism for Tdp2 engagement of heterogeneous DNA damage that causes Top2 poisoning, and indicate that evaluation of Tdp2 status may be an important personalized medicine biomarker informing on individual sensitivities to chemotherapeutic Top2 poisons.


Asunto(s)
Daño del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Hidrolasas Diéster Fosfóricas/química , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/química , Animales , Dominio Catalítico , ADN/química , ADN/metabolismo , Aductos de ADN/química , Aductos de ADN/metabolismo , Reparación del ADN por Unión de Extremidades , ADN-Topoisomerasas de Tipo II/química , Proteínas de Unión al ADN , Humanos , Magnesio/química , Ratones , Ratones Noqueados , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Fosfotirosina/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA