Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Glob Chang Biol ; 29(8): 2132-2140, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36654193

RESUMEN

Climate-driven biodiversity erosion is escalating at an alarming rate. The pressure imposed by climate change is exceptionally high in tropical ecosystems, where species adapted to narrow environmental ranges exhibit strong physiological constraints. Despite the observed detrimental effect of climate change on ecosystems at a global scale, our understanding of the extent to which multiple climatic drivers affect population dynamics is limited. Here, we disentangle the impact of different climatic stressors on 47 rainforest birds inhabiting the mountains of the Australian Wet Tropics using hierarchical population models. We estimate the effect of spatiotemporal changes in temperature, precipitation, heatwaves, droughts and cyclones on the population dynamics of rainforest birds between 2000 and 2016. We find a strong effect of warming and changes in rainfall patterns across the elevational-segregated bird communities, with lowland populations benefiting from increasing temperature and precipitation, while upland species show an inverse strong negative response to the same drivers. Additionally, we find a negative effect of heatwaves on lowland populations, a pattern associated with the observed distribution of these extreme events across elevations. In contrast, cyclones and droughts have a marginal effect on spatiotemporal changes in rainforest bird communities, suggesting a species-specific response unrelated to the elevational gradient. This study demonstrated the importance of unravelling the drivers of climate change impacts on population changes, providing significant insight into the mechanisms accelerating climate-induced biodiversity degradation.


Asunto(s)
Ecosistema , Bosque Lluvioso , Animales , Australia , Aves/fisiología , Biodiversidad , Cambio Climático
2.
Glob Chang Biol ; 29(18): 5122-5138, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37386726

RESUMEN

The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change-such as predicting which species will breach their thermal limits under different warming scenarios-with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.


Asunto(s)
Ecosistema , Extinción Biológica , Humanos , Cadena Alimentaria , Modelos Teóricos , Cambio Climático , Biodiversidad
3.
Glob Chang Biol ; 26(2): 410-416, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31746093

RESUMEN

Climate change poses significant emerging risks to biodiversity, ecosystem function and associated socioecological systems. Adaptation responses must be initiated in parallel with mitigation efforts, but resources are limited. As climate risks are not distributed equally across taxa, ecosystems and processes, strategic prioritization of research that addresses stakeholder-relevant knowledge gaps will accelerate effective uptake into adaptation policy and management action. After a decade of climate change adaptation research within the Australian National Climate Change Adaptation Research Facility, we synthesize the National Adaptation Research Plans for marine, terrestrial and freshwater ecosystems. We identify the key, globally relevant priorities for ongoing research relevant to informing adaptation policy and environmental management aimed at maximizing the resilience of natural ecosystems to climate change. Informed by both global literature and an extensive stakeholder consultation across all ecosystems, sectors and regions in Australia, involving thousands of participants, we suggest 18 priority research topics based on their significance, urgency, technical and economic feasibility, existing knowledge gaps and potential for cobenefits across multiple sectors. These research priorities provide a unified guide for policymakers, funding organizations and researchers to strategically direct resources, maximize stakeholder uptake of resulting knowledge and minimize the impacts of climate change on natural ecosystems. Given the pace of climate change, it is imperative that we inform and accelerate adaptation progress in all regions around the world.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Australia , Biodiversidad , Cambio Climático
4.
Conserv Biol ; 32(5): 1162-1173, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30055016

RESUMEN

To augment mammal conservation in the Eastern Himalayan region, we assessed the resident 255 terrestrial mammal species and identified the 50 most threatened species based on conservation status, endemism, range size, and evolutionary distinctiveness. By using the spatial analysis package letsR and the complementarity core-area method in the conservation planning software Zonation, we assessed the current efficacy of their protection and identified priority conservation areas by comparing protected areas (PAs), land cover, and global ecoregion 2017 maps at a 100 × 100 m spatial scale. The 50 species that were most threatened, geographically restricted, and evolutionarily distinct faced a greater extinction risk than globally nonthreatened and wide-ranging species and species with several close relatives. Small, medium-sized, and data-deficient species faced extinction from inadequate protection in PAs relative to wide-ranging charismatic species. There was a mismatch between current PA distribution and priority areas for conservation of the 50 most endangered species. To protect these species, the skewed regional PA distribution would require expansion. Where possible, new PAs and transboundary reserves in the 35 priority areas we identified should be established. There are adequate remaining natural areas in which to expand current Eastern Himalayan PAs. Consolidation and expansion of PAs in the EH requires strengthening national and regional transboundary collaboration, formulating comprehensive regional land-use plans, diversifying conservation funding, and enhancing information sharing through a consolidated regional database.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Especies en Peligro de Extinción , Mamíferos , Análisis Espacial
5.
Proc Biol Sci ; 283(1828)2016 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-27053754

RESUMEN

There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions.


Asunto(s)
Biodiversidad , Aves/fisiología , Conservación de los Recursos Naturales , Extinción Biológica , Peces/fisiología , Árboles/fisiología , Animales , Brasil , Guyana Francesa , Densidad de Población , Queensland , Bosque Lluvioso
6.
Biol Lett ; 12(10)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27729484

RESUMEN

The effect of twenty-first-century climate change on biodiversity is commonly forecast based on modelled shifts in species ranges, linked to habitat suitability. These projections have been coupled with species-area relationships (SAR) to infer extinction rates indirectly as a result of the loss of climatically suitable areas and associated habitat. This approach does not model population dynamics explicitly, and so accepts that extinctions might occur after substantial (but unknown) delays-an extinction debt. Here we explicitly couple bioclimatic envelope models of climate and habitat suitability with generic life-history models for 24 species of frogs found in the Australian Wet Tropics (AWT). We show that (i) as many as four species of frogs face imminent extinction by 2080, due primarily to climate change; (ii) three frogs face delayed extinctions; and (iii) this extinction debt will take at least a century to be realized in full. Furthermore, we find congruence between forecast rates of extinction using SARs, and demographic models with an extinction lag of 120 years. We conclude that SAR approaches can provide useful advice to conservation on climate change impacts, provided there is a good understanding of the time lags over which delayed extinctions are likely to occur.


Asunto(s)
Anuros , Cambio Climático , Extinción Biológica , Animales , Australia , Biodiversidad , Ecosistema , Modelos Biológicos , Dinámica Poblacional , Factores de Tiempo
7.
Glob Chang Biol ; 20(2): 495-503, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24132984

RESUMEN

Extreme weather events, such as unusually hot or dry conditions, can cause death by exceeding physiological limits, and so cause loss of population. Survival will depend on whether or not susceptible organisms can find refuges that buffer extreme conditions. Microhabitats offer different microclimates to those found within the wider ecosystem, but do these microhabitats effectively buffer extreme climate events relative to the physiological requirements of the animals that frequent them? We collected temperature data from four common microhabitats (soil, tree holes, epiphytes, and vegetation) located from the ground to canopy in primary rainforests in the Philippines. Ambient temperatures were monitored from outside of each microhabitat and from the upper forest canopy, which represent our macrohabitat controls. We measured the critical thermal maxima (CTmax ) of frog and lizard species, which are thermally sensitive and inhabit our microhabitats. Microhabitats reduced mean temperature by 1-2 °C and reduced the duration of extreme temperature exposure by 14-31 times. Microhabitat temperatures were below the CTmax of inhabitant frogs and lizards, whereas macrohabitats consistently contained lethal temperatures. Microhabitat temperatures increased by 0.11-0.66 °C for every 1 °C increase in macrohabitat temperature, and this nonuniformity in temperature change influenced our forecasts of vulnerability for animal communities under climate change. Assuming uniform increases of 6 °C, microhabitats decreased the vulnerability of communities by up to 32-fold, whereas under nonuniform increases of 0.66 to 3.96 °C, microhabitats decreased the vulnerability of communities by up to 108-fold. Microhabitats have extraordinary potential to buffer climate and likely reduce mortality during extreme climate events. These results suggest that predicted changes in distribution due to mortality and habitat shifts that are derived from macroclimatic samples and that assume uniform changes in microclimates relative to macroclimates may be overly pessimistic. Nevertheless, even nonuniform temperature increases within buffered microhabitats would still threaten frogs and lizards.


Asunto(s)
Anuros/fisiología , Calor , Lagartos/fisiología , Microclima , Animales , Cambio Climático , Ecosistema , Filipinas
8.
Biol Lett ; 10(12): 20140819, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25540160

RESUMEN

Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9 °C and reduced maximum temperatures by 3.5 °C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates.


Asunto(s)
Ecosistema , Temperatura , Clima Tropical
9.
Proc Biol Sci ; 280(1770): 20131581, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24026817

RESUMEN

Biodiversity is spatially organized by climatic gradients across elevation and latitude. But do other gradients exist that might drive biogeographic patterns? Here, we show that rainforest's vertical strata provide climatic gradients much steeper than those offered by elevation and latitude, and biodiversity of arboreal species is organized along this gradient. In Philippine and Singaporean rainforests, we demonstrate that rainforest frogs tend to shift up in the rainforest strata as altitude increases. Moreover, a Philippine-wide dataset of frog distributions shows that frog assemblages become increasingly arboreal at higher elevations. Thus, increased arboreality with elevation at broad biogeographic scales mirrors patterns we observed at local scales. Our proposed 'arboreality hypothesis' suggests that the ability to exploit arboreal habitats confers the potential for larger geographical distributions because species can shift their location in the rainforest strata to compensate for shifts in temperature associated with elevation and latitude. This novel finding may help explain patterns of species richness and abundance wherever vegetation produces a vertical microclimatic gradient. Our results further suggest that global warming will 'flatten' the biodiversity in rainforests by pushing arboreal species towards the cooler and wetter ground. This 'flattening' could potentially have serious impacts on forest functioning and species survival.


Asunto(s)
Anuros/fisiología , Biodiversidad , Ambiente , Animales , Clima , Geografía , Filipinas , Singapur , Clima Tropical
10.
Mol Phylogenet Evol ; 62(1): 407-13, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22063263

RESUMEN

Through a combination of macroecological, paleoecological, and phylogeographical analyses, the rainforests of the Australian Wet Tropics (AWT) have emerged as a useful model for understanding sensitivity of species to past climatic change and, hence, for predicting vulnerability to future change. To extend the ecological breadth of comparative phylogeographic analyses, we investigate a clade of myobatrachid frogs, Mixophyes, a genus of large, stream-breeding but terrestrial frogs, three species of which are endemic to rainforests of the AWT. Here we (i) combine mtDNA, allozyme, and morphological data to refine knowledge of the geographic and environmental distribution of each taxon, (ii) resolve relationships among species, and (iii) use mtDNA phylogeography to infer responses of the three taxa to late-Pleistocene and Holocene climatic change. Each of the three species (Mixophyes carbinensis, Mixophyes coggeri, and Mixophyes schevilli) is effectively diagnosed by mtDNA, with the two small-bodied, allopatric species (M. carbinensis and M. schevilli) being sister-taxa. Mixophyes have a very different history from other AWT amphibians, with more recent speciation (net divergences <5%) and much lower and geographically unstructured mtDNA diversity within each species. The combination of low diversity (θ(Π)<0.36%) and strong signals of recent population expansion (Fu's Fs<0) suggests very high sensitivity to climate-driven rainforest dynamics, perhaps due to their large body size, low population density, and their requirement for both wet forest-floor litter and streams suitable for breeding. The results further emphasize the heterogeneity of species' responses to climate change and suggest that species dependent on multiple habitat types could be especially vulnerable.


Asunto(s)
Anuros/genética , Especiación Genética , Animales , Anuros/anatomía & histología , Anuros/clasificación , Femenino , Genes Mitocondriales , Variación Genética , Haplotipos , Isoenzimas/genética , Masculino , Modelos Genéticos , Tipificación de Secuencias Multilocus , Filogenia , Filogeografía , Queensland , ARN Ribosómico 16S/genética , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA