Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 150(5): 1068-81, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939629

RESUMEN

Cellular processes often depend on stable physical associations between proteins. Despite recent progress, knowledge of the composition of human protein complexes remains limited. To close this gap, we applied an integrative global proteomic profiling approach, based on chromatographic separation of cultured human cell extracts into more than one thousand biochemical fractions that were subsequently analyzed by quantitative tandem mass spectrometry, to systematically identify a network of 13,993 high-confidence physical interactions among 3,006 stably associated soluble human proteins. Most of the 622 putative protein complexes we report are linked to core biological processes and encompass both candidate disease genes and unannotated proteins to inform on mechanism. Strikingly, whereas larger multiprotein assemblies tend to be more extensively annotated and evolutionarily conserved, human protein complexes with five or fewer subunits are far more likely to be functionally unannotated or restricted to vertebrates, suggesting more recent functional innovations.


Asunto(s)
Complejos Multiproteicos/análisis , Mapas de Interacción de Proteínas , Proteínas/química , Proteómica/métodos , Humanos , Espectrometría de Masas en Tándem
2.
Proteomics ; 23(17): e2200323, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365936

RESUMEN

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.


Asunto(s)
Proteínas , Reproducibilidad de los Resultados , Proteínas/metabolismo , Unión Proteica
3.
Brief Bioinform ; 22(2): 742-768, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33348379

RESUMEN

SARS-CoV-2 is the causative agent of COVID-19, the ongoing global pandemic. It has posed a worldwide challenge to human health as no effective treatment is currently available to combat the disease. Its severity has led to unprecedented collaborative initiatives for therapeutic solutions against COVID-19. Studies resorting to structure-based drug design for COVID-19 are plethoric and show good promise. Structural biology provides key insights into 3D structures, critical residues/mutations in SARS-CoV-2 proteins, implicated in infectivity, molecular recognition and susceptibility to a broad range of host species. The detailed understanding of viral proteins and their complexes with host receptors and candidate epitope/lead compounds is the key to developing a structure-guided therapeutic design. Since the discovery of SARS-CoV-2, several structures of its proteins have been determined experimentally at an unprecedented speed and deposited in the Protein Data Bank. Further, specialized structural bioinformatics tools and resources have been developed for theoretical models, data on protein dynamics from computer simulations, impact of variants/mutations and molecular therapeutics. Here, we provide an overview of ongoing efforts on developing structural bioinformatics tools and resources for COVID-19 research. We also discuss the impact of these resources and structure-based studies, to understand various aspects of SARS-CoV-2 infection and therapeutic development. These include (i) understanding differences between SARS-CoV-2 and SARS-CoV, leading to increased infectivity of SARS-CoV-2, (ii) deciphering key residues in the SARS-CoV-2 involved in receptor-antibody recognition, (iii) analysis of variants in host proteins that affect host susceptibility to infection and (iv) analyses facilitating structure-based drug and vaccine design against SARS-CoV-2.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Biología Computacional , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Humanos , Conformación Proteica , Proteínas Virales/química
4.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809541

RESUMEN

Liquid-liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles, representing functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integrating the data on LLPS-associated proteins from dedicated databases revealed only modest agreement between them and yielded a high-confidence dataset of 89 human LLPS drivers. Analysis of the supporting evidence for our dataset uncovered a systematic and potentially concerning difference between protein concentrations used in a good fraction of the in vitro LLPS experiments, a key parameter that governs the phase behavior, and the proteomics-derived cellular abundance levels of the corresponding proteins. Closer scrutiny of the underlying experimental data enabled us to offer a sound rationale for this systematic difference, which draws on our current understanding of the cellular organization of the proteome and the LLPS process. In support of this rationale, we find that genes coding for our human LLPS drivers tend to be dosage-sensitive, suggesting that their cellular availability is tightly regulated to preserve their functional role in direct or indirect relation to condensate formation. Our analysis offers guideposts for increasing agreement between in vitro and in vivo studies, probing the roles of proteins in LLPS.


Asunto(s)
Dosificación de Gen , Genes , Transición de Fase , Proteínas/química , Bases de Datos Factuales , Humanos , Anotación de Secuencia Molecular , Orgánulos , Proteoma/metabolismo
5.
Biophys J ; 118(12): 2952-2965, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32502383

RESUMEN

Intrinsically disordered proteins are proteins whose native functional states represent ensembles of highly diverse conformations. Such ensembles are a challenge for quantitative structure comparisons because their conformational diversity precludes optimal superimposition of the atomic coordinates necessary for deriving common similarity measures such as the root mean-square deviation of these coordinates. Here, we introduce superimposition-free metrics that are based on computing matrices of the Cα-Cα distance distributions within ensembles and comparing these matrices between ensembles. Differences between two matrices yield information on the similarity between specific regions of the polypeptide, whereas the global structural similarity is captured by the root mean-square difference between the medians of the Cα-Cα distance distributions of two ensembles. Together, our metrics enable rigorous investigations of structure-function relationships in conformational ensembles of intrinsically disordered proteins derived using experimental restraints or by molecular simulations and for proteins containing both structured and disordered regions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Benchmarking , Péptidos , Conformación Proteica
6.
Proteins ; 88(8): 916-938, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31886916

RESUMEN

We present the seventh report on the performance of methods for predicting the atomic resolution structures of protein complexes offered as targets to the community-wide initiative on the Critical Assessment of Predicted Interactions. Performance was evaluated on the basis of 36 114 models of protein complexes submitted by 57 groups-including 13 automatic servers-in prediction rounds held during the years 2016 to 2019 for eight protein-protein, three protein-peptide, and five protein-oligosaccharide targets with different length ligands. Six of the protein-protein targets represented challenging hetero-complexes, due to factors such as availability of distantly related templates for the individual subunits, or for the full complex, inter-domain flexibility, conformational adjustments at the binding region, or the multi-component nature of the complex. The main challenge for the protein-peptide and protein-oligosaccharide complexes was to accurately model the ligand conformation and its interactions at the interface. Encouragingly, models of acceptable quality, or better, were obtained for a total of six protein-protein complexes, which included four of the challenging hetero-complexes and a homo-decamer. But fewer of these targets were predicted with medium or higher accuracy. High accuracy models were obtained for two of the three protein-peptide targets, and for one of the protein-oligosaccharide targets. The remaining protein-sugar targets were predicted with medium accuracy. Our analysis indicates that progress in predicting increasingly challenging and diverse types of targets is due to closer integration of template-based modeling techniques with docking, scoring, and model refinement procedures, and to significant incremental improvements in the underlying methodologies.


Asunto(s)
Simulación del Acoplamiento Molecular , Oligosacáridos/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Oligosacáridos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína
7.
Genet Med ; 21(4): 1021-1026, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30293988

RESUMEN

PURPOSE: RAC3 is an underexamined member of the Rho GTPase gene family that is expressed in the developing brain and linked to key cellular functions. De novo missense variants in the homolog RAC1 were recently associated with developmental disorders. In the RAC subfamily, transforming missense changes at certain shared residues have been observed in human cancers and previously characterized in experimental studies. The purpose of this study was to determine whether constitutional dysregulation of RAC3 is associated with human disease. METHODS: We discovered a RAC3 variant in the index case using genome sequencing, and searched for additional variants using international data-sharing initiatives. Functional effects of the variants were assessed using a multifaceted approach generalizable to most clinical laboratory settings. RESULTS: We rapidly identified five individuals with de novo monoallelic missense variants in RAC3, including one recurrent change. Every participant had severe intellectual disability and brain malformations. In silico protein modeling, and prior in vivo and in situ experiments, supported a transforming effect for each of the three different RAC3 variants. All variants were observed in databases of somatic variation in cancer. CONCLUSIONS: Missense variants in RAC3 cause a novel brain disorder, likely through a mechanism of constitutive protein activation.


Asunto(s)
Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Proteínas de Unión al GTP rac/genética , Adulto , Preescolar , GTP Fosfohidrolasas/genética , Humanos , Recién Nacido , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/fisiopatología , Mutación Missense , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Secuenciación Completa del Genoma
8.
Proteomics ; 23(17): e2200084, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37667815
9.
Proteins ; 86 Suppl 1: 257-273, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29127686

RESUMEN

We present the quality assessment of 5613 models submitted by predictor groups from both CAPRI and CASP for the total of 15 most tractable targets from the second joint CASP-CAPRI protein assembly prediction experiment. These targets comprised 12 homo-oligomers and 3 hetero-complexes. The bulk of the analysis focuses on 10 targets (of CAPRI Round 37), which included all 3 hetero-complexes, and whose protein chains or the full assembly could be readily modeled from structural templates in the PDB. On average, 28 CAPRI groups and 10 CASP groups (including automatic servers), submitted models for each of these 10 targets. Additionally, about 16 groups participated in the CAPRI scoring experiments. A range of acceptable to high quality models were obtained for 6 of the 10 Round 37 targets, for which templates were available for the full assembly. Poorer results were achieved for the remaining targets due to the lower quality of the templates available for the full complex or the individual protein chains, highlighting the unmet challenge of modeling the structural adjustments of the protein components that occur upon binding or which must be accounted for in template-based modeling. On the other hand, our analysis indicated that residues in binding interfaces were correctly predicted in a sizable fraction of otherwise poorly modeled assemblies and this with higher accuracy than published methods that do not use information on the binding partner. Lastly, the strengths and weaknesses of the assessment methods are evaluated and improvements suggested.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Multimerización de Proteína , Proteínas/química , Algoritmos , Humanos , Análisis de Secuencia de Proteína
10.
Nat Methods ; 12(8): 725-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26121405

RESUMEN

Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality-an absence that risks data integrity and reproducibility. We describe a mass spectrometry-based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality.


Asunto(s)
Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Cromatina/química , Inmunoprecipitación/métodos , Proteómica/métodos , Clonación Molecular , Biología Computacional/métodos , Escherichia coli/metabolismo , Células HEK293 , Humanos , Fragmentos de Inmunoglobulinas/química , Inmunoglobulina G/química , Espectrometría de Masas/métodos , Biblioteca de Péptidos , Proteínas/química , Proteoma , Reproducibilidad de los Resultados
11.
Nature ; 489(7417): 585-9, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22940862

RESUMEN

Macromolecular assemblies involving membrane proteins (MPs) serve vital biological roles and are prime drug targets in a variety of diseases. Large-scale affinity purification studies of soluble-protein complexes have been accomplished for diverse model organisms, but no global characterization of MP-complex membership has been described so far. Here we report a complete survey of 1,590 putative integral, peripheral and lipid-anchored MPs from Saccharomyces cerevisiae, which were affinity purified in the presence of non-denaturing detergents. The identities of the co-purifying proteins were determined by tandem mass spectrometry and subsequently used to derive a high-confidence physical interaction map encompassing 1,726 membrane protein-protein interactions and 501 putative heteromeric complexes associated with the various cellular membrane systems. Our analysis reveals unexpected physical associations underlying the membrane biology of eukaryotes and delineates the global topological landscape of the membrane interactome.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Quitina Sintasa/metabolismo , Detergentes , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/análisis , Proteínas de la Membrana/química , Unión Proteica , Mapeo de Interacción de Proteínas , Proteoma/análisis , Proteoma/química , Proteoma/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química
12.
Proteins ; 85(3): 359-377, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27865038

RESUMEN

We present the sixth report evaluating the performance of methods for predicting the atomic resolution structures of protein complexes offered as targets to the community-wide initiative on the Critical Assessment of Predicted Interactions (CAPRI). The evaluation is based on a total of 20,670 predicted models for 8 protein-peptide complexes, a novel category of targets in CAPRI, and 12 protein-protein targets in CAPRI prediction Rounds held during the years 2013-2016. For two of the protein-protein targets, the focus was on the prediction of side-chain conformation and positions of interfacial water molecules. Seven of the protein-protein targets were particularly challenging owing to their multicomponent nature, to conformational changes at the binding site, or to a combination of both. Encouragingly, the very large multiprotein complex with the nucleosome was correctly predicted, and correct models were submitted for the protein-peptide targets, but not for some of the challenging protein-protein targets. Models of acceptable quality or better were obtained for 14 of the 20 targets, including medium quality models for 13 targets and high quality models for 8 targets, indicating tangible progress of present-day computational methods in modeling protein complexes with increased accuracy. Our evaluation suggests that the progress stems from better integration of different modeling tools with docking procedures, as well as the use of more sophisticated evolutionary information to score models. Nonetheless, adequate modeling of conformational flexibility in interacting proteins remains an important area with a crucial need for improvement. Proteins 2017; 85:359-377. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Simulación del Acoplamiento Molecular , Complejos Multiproteicos/química , Péptidos/química , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Agua/química , Algoritmos , Benchmarking , Sitios de Unión , Biología Computacional/métodos , Humanos , Nucleosomas/química , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/estadística & datos numéricos , Proyectos de Investigación , Programas Informáticos
13.
Proteins ; 85(1): 10-16, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27172383

RESUMEN

Protein docking procedures carry out the task of predicting the structure of a protein-protein complex starting from the known structures of the individual protein components. More often than not, however, the structure of one or both components is not known, but can be derived by homology modeling on the basis of known structures of related proteins deposited in the Protein Data Bank (PDB). Thus, the problem is to develop methods that optimally integrate homology modeling and docking with the goal of predicting the structure of a complex directly from the amino acid sequences of its component proteins. One possibility is to use the best available homology modeling and docking methods. However, the models built for the individual subunits often differ to a significant degree from the bound conformation in the complex, often much more so than the differences observed between free and bound structures of the same protein, and therefore additional conformational adjustments, both at the backbone and side chain levels need to be modeled to achieve an accurate docking prediction. In particular, even homology models of overall good accuracy frequently include localized errors that unfavorably impact docking results. The predicted reliability of the different regions in the model can also serve as a useful input for the docking calculations. Here we present a benchmark dataset that should help to explore and solve combined modeling and docking problems. This dataset comprises a subset of the experimentally solved 'target' complexes from the widely used Docking Benchmark from the Weng Lab (excluding antibody-antigen complexes). This subset is extended to include the structures from the PDB related to those of the individual components of each complex, and hence represent potential templates for investigating and benchmarking integrated homology modeling and docking approaches. Template sets can be dynamically customized by specifying ranges in sequence similarity and in PDB release dates, or using other filtering options, such as excluding sets of specific structures from the template list. Multiple sequence alignments, as well as structural alignments of the templates to their corresponding subunits in the target are also provided. The resource is accessible online or can be downloaded at http://cluspro.org/benchmark, and is updated on a weekly basis in synchrony with new PDB releases. Proteins 2016; 85:10-16. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Benchmarking , Caspasa 9/química , Simulación del Acoplamiento Molecular , Programas Informáticos , Homología Estructural de Proteína , Proteína Inhibidora de la Apoptosis Ligada a X/química , Secuencia de Aminoácidos , Sitios de Unión , Caspasa 9/metabolismo , Bases de Datos de Proteínas , Humanos , Internet , Ligandos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
14.
Biochem Biophys Res Commun ; 483(1): 502-508, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28007597

RESUMEN

The investigational compound BIA 10-2474, designed as a long-acting and reversible inhibitor of fatty acid amide hydrolase for the treatment of neuropathic pain, led to the death of one participant and hospitalization of five others due to intracranial hemorrhage in a Phase I clinical trial. Putative off-target activities of BIA 10-2474 have been suggested to be major contributing factors to the observed neurotoxicity in humans, motivating our study's proteome-wide screening approach to investigate its polypharmacology. Accordingly, we performed an in silico screen against 80,923 protein structures reported in the Protein Data Bank. The resulting list of 284 unique human interactors was further refined using target-disease association analyses to a subset of proteins previously linked to neurological, intracranial, inflammatory, hemorrhagic or clotting processes and/or diseases. Eleven proteins were identified as potential targets of BIA 10-2474, and the two highest-scoring proteins, Factor VII and thrombin, both essential blood-clotting factors, were predicted to be inhibited by BIA 10-2474 and suggest a plausible mechanism of toxicity. Once this small molecule becomes commercially available, future studies will be conducted to evaluate the predicted inhibitory effect of BIA 10-2474 on blood clot formation specifically in the brain.


Asunto(s)
Analgésicos/efectos adversos , Óxidos N-Cíclicos/efectos adversos , Óxidos N-Cíclicos/química , Síndromes de Neurotoxicidad/metabolismo , Proteoma/metabolismo , Piridinas/efectos adversos , Piridinas/química , Amidohidrolasas/metabolismo , Analgésicos/química , Analgésicos/farmacocinética , Biología Computacional/métodos , Óxidos N-Cíclicos/farmacocinética , Humanos , Simulación del Acoplamiento Molecular , Proteoma/química , Piridinas/farmacocinética
15.
Biophys J ; 109(6): 1087-100, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26340815

RESUMEN

We present an overview of the full repertoire of intertwined associations in homooligomeric proteins. This overview summarizes recent findings on the different categories of intertwined associations in known protein structures, their assembly modes, the properties of their interfaces, and their structural plasticity. Furthermore, the current body of knowledge on the so-called three-dimensional domain-swapped systems is reexamined in the context of the wider landscape of intertwined homooligomers, with a particular focus on the mechanistic aspects that underpin intertwined self-association processes in proteins. Insights gained from this integrated overview into the physical and biological roles of intertwining are highlighted.


Asunto(s)
Multimerización de Proteína , Subunidades de Proteína/metabolismo , Estabilidad Proteica , Subunidades de Proteína/genética
17.
Mol Syst Biol ; 10: 741, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25028490

RESUMEN

The hematopoietic system is a distributed tissue that consists of functionally distinct cell types continuously produced through hematopoietic stem cell (HSC) differentiation. Combining genomic and phenotypic data with high-content experiments, we have built a directional cell-cell communication network between 12 cell types isolated from human umbilical cord blood. Network structure analysis revealed that ligand production is cell type dependent, whereas ligand binding is promiscuous. Consequently, additional control strategies such as cell frequency modulation and compartmentalization were needed to achieve specificity in HSC fate regulation. Incorporating the in vitro effects (quiescence, self-renewal, proliferation, or differentiation) of 27 HSC binding ligands into the topology of the cell-cell communication network allowed coding of cell type-dependent feedback regulation of HSC fate. Pathway enrichment analysis identified intracellular regulatory motifs enriched in these cell type- and ligand-coupled responses. This study uncovers cellular mechanisms of hematopoietic cell feedback in HSC fate regulation, provides insight into the design principles of the human hematopoietic system, and serves as a foundation for the analysis of intercellular regulation in multicellular systems.


Asunto(s)
Comunicación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Algoritmos , Células Cultivadas , Perfilación de la Expresión Génica , Hematopoyesis , Humanos , Ligandos
18.
Proteins ; 82(11): 3163-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25179222

RESUMEN

Critical Assessment of PRedicted Interactions (CAPRI) has proven to be a catalyst for the development of docking algorithms. An essential step in docking is the scoring of predicted binding modes in order to identify stable complexes. In 2005, CAPRI introduced the scoring experiment, where upon completion of a prediction round, a larger set of models predicted by different groups and comprising both correct and incorrect binding modes, is made available to all participants for testing new scoring functions independently from docking calculations. Here we present an expanded benchmark data set for testing scoring functions, which comprises the consolidated ensemble of predicted complexes made available in the CAPRI scoring experiment since its inception. This consolidated scoring benchmark contains predicted complexes for 15 published CAPRI targets. These targets were subjected to 23 CAPRI assessments, due to existence of multiple binding modes for some targets. The benchmark contains more than 19,000 protein complexes. About 10% of the complexes represent docking predictions of acceptable quality or better, the remainder represent incorrect solutions (decoys). The benchmark set contains models predicted by 47 different predictor groups including web servers, which use different docking and scoring procedures, and is arguably as diverse as one may expect, representing the state of the art in protein docking. The data set is publicly available at the following URL: http://cb.iri.univ-lille1.fr/Users/lensink/Score_set.


Asunto(s)
Bases de Datos de Proteínas , Simulación del Acoplamiento Molecular/métodos , Mapeo de Interacción de Proteínas/métodos , Internet , Modelos Moleculares
19.
Nucleic Acids Res ; 40(Web Server issue): W615-21, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22638571

RESUMEN

High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Gráficos por Computador , Mutación INDEL , Internet , Polimorfismo de Nucleótido Simple , Población/genética
20.
PLoS Genet ; 7(11): e1002377, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22125496

RESUMEN

As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target.


Asunto(s)
Membrana Celular/genética , Epistasis Genética/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Medios de Cultivo , Resistencia a Medicamentos/genética , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Interacción Gen-Ambiente , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas/genética , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/metabolismo , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA