Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
New Phytol ; 242(6): 2495-2509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641748

RESUMEN

Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.


Asunto(s)
Sequías , Fagus , Herbivoria , Fitoquímicos , Hojas de la Planta , Fagus/fisiología , Herbivoria/fisiología , Hojas de la Planta/fisiología , Animales , Metaboloma
2.
Glob Chang Biol ; 30(2): e17196, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38404209

RESUMEN

Cliffs are remarkable environments that enable the existence of microclimates. These small, isolated sites, decoupled from the regional macroclimate, play a significant role in maintaining species biodiversity, particularly in topographically homogeneous landscapes. Our study investigated the microclimate of south-exposed forests situated at the edge of sandstone cliffs in the western part of the North Alpine Foreland Basin in Switzerland and its role in local forest community composition. Using direct measurements from data loggers, as well as vegetation analyses, it was possible to quantify the microclimate of the cliff-edge forests and compare it with that of the surrounding forests. Our results highlighted the significant xerothermic and more variable nature of the cliff-edge forest microclimate, with a mean soil temperature up to 3.72°C warmer in the summer, higher annual (+28%) and daily (+250%) amplitudes of soil temperature, which frequently expose vegetation to extreme temperatures, and an 83% higher soil drying rate. These differences have a distinct influence on forest communities: cliff-edge forests are significantly different from surrounding forests. The site particularities of cliff edges support the presence of locally rare species and forest types, particularly of Scots pine. Cliff edges must therefore be considered microrefugia with a high conservation value for both xerothermic species and flora adapted to more continental climates. Moreover, the microclimate of cliff-edge forests could resemble the future climate in many ways. We argue that these small areas, which are already experiencing the future climate, can be seen as natural laboratories to better answer the following question: what will our forests look like in a few decades with accelerated climate change?


Les falaises sont des milieux remarquables qui permettent l'existence de microclimats. Ces petites surfaces, aux conditions éloignées du climat régional, jouent un rôle important pour la biodiversité, en particulier dans les paysages topographiquement homogènes. Notre étude a porté sur le microclimat de forêts exposées au sud, situées au bord de falaises de molasse, sur le plateau suisse, et sur son rôle dans la composition de la communauté végétale locale. En utilisant des mesures directes provenant d'enregistreurs automatiques de données, ainsi que des analyses de la végétation, il a été possible de quantifier le microclimat des forêts de bord de falaise et de le comparer à celui des forêts environnantes. Nos résultats ont mis en évidence la nature significativement xérothermique et plus variable du microclimat des forêts de bord de falaise, avec une température moyenne du sol jusqu'à 3.72°C plus élevée en été, des amplitudes accrues annuelles (+28%) et journalières (+250%) de la température du sol, qui exposent fréquemment la végétation à des températures extrêmes, et un taux d'assèchement du sol 83% plus élevé. Ces différences ont une influence marquée sur les communautés forestières: les forêts de bord de falaise sont très différentes des forêts environnantes. Elles permettent la présence d'espèces et de types de forêts localement rares, notamment des pinèdes. Les bords de falaise doivent donc être considérés comme des microrefuges à haute valeur de conservation pour les espèces xérothermiques et la flore adaptée à des climats plus continentaux. En outre, le microclimat des forêts de bord de falaise pourrait ressembler au climat futur à bien des égards. Nous soutenons que ces petites zones, qui connaissent déjà le climat futur, peuvent être considérées comme des laboratoires naturels permettant de mieux répondre à la question suivante: à quoi ressembleront nos forêts dans quelques décennies, suite aux changements climatiques?


Asunto(s)
Cambio Climático , Árboles , Bosques , Biodiversidad , Microclima , Suelo
3.
Proc Natl Acad Sci U S A ; 117(40): 24885-24892, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958662

RESUMEN

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests' resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.


Asunto(s)
Carbono/metabolismo , Pinus sylvestris/metabolismo , Suelo/química , Árboles/metabolismo , Carbono/análisis , Cambio Climático , Sequías , Ecosistema , Bosques , Pinus sylvestris/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Rizosfera , Árboles/crecimiento & desarrollo , Agua/análisis , Agua/metabolismo
4.
Glob Chang Biol ; 28(9): 3066-3082, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170154

RESUMEN

Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.


Aún existen importantes vacíos en la comprensión de la respuesta reproductiva de las plantas al cambio medioambiental, en parte, porque su monitoreo en especies de plantas longevas requiere una observación directa durante muchos años, y estos conjuntos de datos rara vez han estado disponibles. Aquí presentamos a MASTREE +, una base de datos que recopila series de tiempo de la reproducción de las plantas de todo el planeta, poniendo a disposición estos datos de libre acceso para la comunidad científica. MASTREE + incluye 73.828 puntos de observación de la reproducción anual georreferenciados (ej. conteos de semillas y frutos) en poblaciones de plantas perennes en todo el mundo. Estas observaciones consisten en 5971 series temporales a nivel de población provenientes de 974 especies en 66 países. La mediana de la duración de las series de tiempo es de 10 años (media = 12.4 años) y el conjunto de datos incluye 1.122 series de al menos dos décadas (≥20 años de observaciones). Para un subconjunto de especies bien estudiadas, MASTREE +incluye un amplio conjunto de series temporales replicadas en gradientes geográficos y climáticos. Describimos el conjunto de datos de acceso abierto disponible como un archivo.csv y presentamos una aplicación web asociada para la exploración de datos. MASTREE+ proporcionará la base para mejorar la comprensión sobre la respuesta reproductiva de plantas longevas al cambio medioambiental. Además, MASTREE+ facilitará los avances en la investigación de la ecología y la evolución de las estrategias reproductivas en plantas perennes y el papel de la reproducción vegetal como determinante de la dinámica de ecosistemas.


Asunto(s)
Ecosistema , Reproducción , Ecología , Plantas , Semillas/fisiología
5.
Ecol Lett ; 23(2): 210-220, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31858712

RESUMEN

Highly variable and synchronised production of seeds by plant populations, known as masting, is implicated in many important ecological processes, but how it arises remains poorly understood. The lack of experimental studies prevents underlying mechanisms from being explicitly tested, and thereby precludes meaningful predictions on the consequences of changing environments for plant reproductive patterns and global vegetation dynamics. Here we review the most relevant proximate drivers of masting and outline a research agenda that takes the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding. We divide the experimental framework into three main processes: resource dynamics, pollen limitation and genetic and hormonal regulation, and illustrate how specific predictions about proximate mechanisms can be tested, highlighting the few successful experiments as examples. We envision that the experiments we outline will deliver new insights into how and why masting patterns might respond to a changing environment.


Asunto(s)
Ecología , Polen , Reproducción , Semillas
6.
Plant Cell Environ ; 43(5): 1288-1299, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31990067

RESUMEN

Long generation times have been suggested to hamper rapid genetic adaptation of organisms to changing environmental conditions. We examined if environmental memory of the parental Scots pines (Pinus sylvestris L.) drive offspring survival and growth. We used seeds from trees growing under naturally dry conditions (control), irrigated trees (irrigated from 2003 to 2016), and formerly irrigated trees ("irrigation stop"; irrigated from 2003-2013; control condition since 2014). We performed two experiments, one under controlled greenhouse conditions and one at the experimental field site. In the greenhouse, the offspring from control trees exposed regularly to drought were more tolerant to hot-drought conditions than the offspring from irrigated trees and showed lower mortality even though there was no genetic difference. However, under optimal conditions (high water supply and full sunlight), these offspring showed lower growth and were outperformed by the offspring of the irrigated trees. This different offspring growth, with the offspring of the "irrigation-stop" trees showing intermediate responses, points to the important role of transgenerational memory for the long-term acclimation of trees. Such memory effects, however, may be overridden by climatic extremes during germination and early growth stages such as the European 2018 mega-drought that impacted our field experiment.


Asunto(s)
Adaptación Fisiológica/fisiología , Pinus sylvestris/fisiología , Aclimatación/fisiología , Ambiente , Germinación/fisiología , Semillas/fisiología , Estrés Fisiológico
7.
Glob Ecol Biogeogr ; 29(2): 281-294, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32063745

RESUMEN

AIM: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION: Global. TIME PERIOD: Recent. MAJOR TAXA STUDIED: Trees. METHODS: We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS: In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS: Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.

8.
Ecol Appl ; 30(6): e02138, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32329158

RESUMEN

Adult flower-visiting insects feed on nectar and pollen and partly collect floral resources to feed their larvae. The reduction in food availability has therefore been proposed as one of the main causes for the drastic decline in flower-visiting insects in Central Europe. We compared the current (2012-2017) abundances of food plants of different groups of flower-visiting insects to that of 1900-1930 in the canton of Zurich, Switzerland. Comparisons were done separately for different vegetation types, flowering months, and groups of diurnal flower-visiting insects, such as bees, bumble bees, wasps, butterflies, hoverflies, flies, and beetles. We found a general decrease in food plant abundance for all groups of flower-visiting insects and in all vegetation types except ruderal areas. Reductions of food plant abundance were most pronounced for wetlands and agricultural fields, reflecting the massive transformation of wetlands into other habitat types and the intensified management of agricultural fields. Food plant abundance for specialized flower visitors (bees, bumble bees, butterflies) of wetlands decreased most strongly in May and for generalized flower visitors (wasps, hoverflies, flies, beetles) in July. Specialized plant species, i.e., species with few groups of flower visitors, decreased more strongly in abundance than species with many groups of flower visitors. Finally, we found a homogenization of food plant assemblages in all vegetation types except ruderal areas, where the opposite pattern emerged. Our results suggest a significant reduction in the diversity and abundance of food plants for flower-visiting insects over the past century, which has been most severe for the more specialized insect groups. The trend of insect decline, in particular those specialized on few plant species, can only be stopped by extending suitable habitats, i.e., by increasing food availability and reestablish selected plant populations.


Asunto(s)
Flores , Polinización , Animales , Abejas , Europa (Continente) , Insectos , Plantas Comestibles , Suiza
9.
Glob Chang Biol ; 25(11): 3781-3792, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31436853

RESUMEN

Extreme climate events (ECEs) such as severe droughts, heat waves, and late spring frosts are rare but exert a paramount role in shaping tree species distributions. The frequency of such ECEs is expected to increase with climate warming, threatening the sustainability of temperate forests. Here, we analyzed 2,844 tree-ring width series of five dominant European tree species from 104 Swiss sites ranging from 400 to 2,200 m a.s.l. for the period 1930-2016. We found that (a) the broadleaved oak and beech are sensitive to late frosts that strongly reduce current year growth; however, tree growth is highly resilient and fully recovers within 2 years; (b) radial growth of the conifers larch and spruce is strongly and enduringly reduced by spring droughts-these species are the least resistant and resilient to droughts; (c) oak, silver fir, and to a lower extent beech, show higher resistance and resilience to spring droughts and seem therefore better adapted to the future climate. Our results allow a robust comparison of the tree growth responses to drought and spring frost across large climatic gradients and provide striking evidence that the growth of some of the most abundant and economically important European tree species will be increasingly limited by climate warming. These results could serve for supporting species selection to maintain the sustainability of forest ecosystem services under the expected increase in ECEs.


Asunto(s)
Sequías , Fagus , Cambio Climático , Ecosistema , Bosques , Árboles
10.
Sensors (Basel) ; 18(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347701

RESUMEN

In order to run a localization filter for parking systems in real time, the directional information must be directly available when a distance measurement of the wheel speed sensor is detected. When the vehicle is launching, the wheel speed sensors may already detect distance measurement in the form of Delta-Wheel-Pulse-Counts (DWPCs) without having defined a rolling direction. This phenomenon is particularly problematic during parking maneuvers, where many small correction strokes are made. If a localization filter is used for positioning, the restrained DWPCs cannot process in real time. Without directional information in the form of a rolling direction signal, the filter has to ignore the DWPCs or artificially stop until a rolling direction signal is present. For this reason, methods for earlier estimation of the rolling direction based on the pattern of the incoming DWPCs and based on the force equilibrium have been presented. Since the new methods still have their weaknesses and a wrong estimation of the rolling direction can occur, an extension of a so-called Dual-Localization filter approach is presented. The Dual-Localization filter uses two localization filters and an intelligent initialization logic that ensures that both filters move in opposite directions at launching. The primary localization filter uses the estimated and the secondary one the opposite direction. As soon as a valid rolling direction signal is present, an initialization logic is used to decide which localization filter has previously moved in the true direction. The localization filter that has moved in the wrong direction is initialized with the states and covariances of the other localization filter. This extension allows for a fast and real-time capability to be achieved, and the accumulated velocity error can be dramatically reduced.

11.
Oecologia ; 183(2): 519-530, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27832367

RESUMEN

In anticipation of more severe summer droughts, forestry in temperate Europe is searching for drought-resistant ecotypes of native tree species that might maintain ecosystem services in the future. We investigated how spring precipitation and soil conditions interact with summer drought and affect the establishment of conifer seedlings from different climatic origin. Emergence, establishment and subsequent performance of seedlings originating from autochthonous, Central Alpine, continental Eastern European, and Mediterranean Pinus sylvestris and Picea abies populations were studied in the dry Alpine Rhine valley, Switzerland, at three sites with differing soil water holding capacities and in 3 years with contrasting weather conditions. In addition to this natural inter-annual variation, precipitation was manipulated within sites with throughfall reduction roofs. Seedling establishment and growth were principally affected by the spring weather in the year of emergence. In years with average to positive spring water balance, seedlings grown at the site with the highest water holding capacity had 2-5 times more aboveground biomass than seedlings grown at sites with less favourable soils. Effects of seed origin were marginal and only detectable at the drier sites: contrary to our expectations, seedlings from the Central Alpine Rhone valley, where the climatic spring water deficit is large, outperformed those from the Mediterranean. Consequently, plantation of non-native populations from dryer origin will mitigate the effects of increased summer drought at driest sites only, while the inter-annual variability of spring precipitation will continue to enable temperate conifers to regenerate on a wide range of forest soils independent of seed origin.


Asunto(s)
Sequías , Suelo , Tracheophyta , Estaciones del Año , Semillas , Agua
12.
For Ecol Manage ; 388: 120-131, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28860677

RESUMEN

Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries.

14.
Ecography ; 38(6): 578-589, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26290621

RESUMEN

The role of competition for light among plants has long been recognised at local scales, but its importance for plant species distributions at larger spatial scales has generally been ignored. Tree cover modifies the local abiotic conditions below the canopy, notably by reducing light availability, and thus, also the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains, by affecting colonisation probabilities and local extinction risks of herbs and shrubs. To assess the effect of tree cover at both the plot- and landscape-grain sizes (approximately 10-m and 1-km), we fit Generalised Linear Models (GLMs) for the plot-level distributions of 960 species of herbs and shrubs using 6,935 vegetation plots across the European Alps. We ran four models with different combinations of variables (climate, soil and tree cover) at both spatial grains for each species. We used partial regressions to evaluate the independent effects of plot- and landscape-grain tree cover on plot-level plant communities. Finally, the effects on species-specific elevational range limits were assessed by simulating a removal experiment comparing the species distributions under high and low tree cover. Accounting for tree cover improved the model performance, with the probability of the presence of shade-tolerant species increasing with increasing tree cover, whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both the plot and landscape spatial grains, albeit most strongly at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-level plant communities. With high tree cover, shade-intolerant species exhibited narrower elevational ranges than with low tree cover whereas shade-tolerant species showed wider elevational ranges at both limits. These findings suggest that forecasts of climate-related range shifts for herb and shrub species may be modified by tree cover dynamics.

15.
Glob Ecol Biogeogr ; 23(6): 620-632, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24791149

RESUMEN

AIM: Phylogenetic diversity patterns are increasingly being used to better understand the role of ecological and evolutionary processes in community assembly. Here, we quantify how these patterns are influenced by scale choices in terms of spatial and environmental extent and organismic scales. LOCATION: European Alps. METHODS: We applied 42 sampling strategies differing in their combination of focal scales. For each resulting sub-dataset, we estimated the phylogenetic diversity of the species pools, phylogenetic α-diversities of local communities, and statistics commonly used together with null models in order to infer non-random diversity patterns (i.e. phylogenetic clustering versus over-dispersion). Finally, we studied the effects of scale choices on these measures using regression analyses. RESULTS: Scale choices were decisive for revealing signals in diversity patterns. Notably, changes in focal scales sometimes reversed a pattern of over-dispersion into clustering. Organismic scale had a stronger effect than spatial and environmental extent. However, we did not find general rules for the direction of change from over-dispersion to clustering with changing scales. Importantly, these scale issues had only a weak influence when focusing on regional diversity patterns that change along abiotic gradients. MAIN CONCLUSIONS: Our results call for caution when combining phylogenetic data with distributional data to study how and why communities differ from random expectations of phylogenetic relatedness. These analyses seem to be robust when the focus is on relating community diversity patterns to variation in habitat conditions, such as abiotic gradients. However, if the focus is on identifying relevant assembly rules for local communities, the uncertainty arising from a certain scale choice can be immense. In the latter case, it becomes necessary to test whether emerging patterns are robust to alternative scale choices.

16.
Sci Total Environ ; 912: 169068, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38049004

RESUMEN

The record-breaking drought in 2018 caused premature leaf discoloration and shedding (early browning) in many beech (Fagus sylvatica L.) dominated forests in Central Europe. However, a high degree of variability in drought response among individual beech trees was observed. While some trees were severely impacted by the prolonged water deficits and high temperatures, others remained vital with no or only minor signs of crown vitality loss. Why some beech trees were more susceptible to drought-induced crown damage than others and whether growth recovery is possible are poorly understood. Here, we aimed to identify growth characteristics associated with the variability in drought response between individual beech trees based on a sample of 470 trees in northern Switzerland. By combining tree growth measurements and crown condition assessments, we also investigated the possible link between crown dieback and growth recovery after drought. Beech trees with early browning exhibited an overall lower growth vigor before the 2018 drought than co-occurring vital beech trees. This lower vigor is mainly indicated by lower overall growth rates, stronger growth declines in the past decades, and higher growth-climate sensitivity. Particularly, warm previous year summer conditions negatively affected current growth of the early-browning trees. These findings suggest that the affected trees had less access to critical resources and were physiologically limited in their growth predisposing them to early browning. Following the 2018 drought, observed growth recovery potential corresponded to the amount of crown dieback and the local climatic water balance. Overall, our findings emphasize that beech-dominated forests in Central Europe are under increasing pressure from severe droughts, ultimately reducing the competitive ability of this species, especially on lowland sites with shallow soils and low water holding capacity.


Asunto(s)
Fagus , Fagus/fisiología , Sequías , Bosques , Estaciones del Año , Árboles , Agua
17.
Ecol Lett ; 15(8): 899-911, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22553898

RESUMEN

Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.


Asunto(s)
Cambio Climático , Ecosistema , Desarrollo de la Planta , Lluvia , Adaptación Biológica , Biodiversidad , Biomasa , Predicción , Investigación/tendencias , Suelo
18.
Oecologia ; 169(1): 269-79, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22081261

RESUMEN

Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.


Asunto(s)
Cambio Climático , Ambiente , Fenotipo , Pinus sylvestris/fisiología , Pinus/fisiología , Biomasa , Sequías , Variación Genética , Genotipo , Región Mediterránea , Pinus/genética , Pinus/crecimiento & desarrollo , Pinus sylvestris/genética , Pinus sylvestris/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología
19.
Oecologia ; 167(1): 219-28, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21468664

RESUMEN

Fires shape fundamental properties of many forest ecosystems and climate change will increase their relevance in regions where fires occur infrequently today. In ecosystems that are not adapted to fire, post-fire tree recruitment is often sparse, a fact that might be attributed to a transient lack of mycorrhizae. Ectomycorrhizal (EcM) fungi play an important role for recruitment by enhancing nutrient and water uptake of their hosts. The questions arise whether and for how long the EcM community is transformed by fire. We investigated the resistance and resilience of EcM fungal communities on a chronosequence of 12 Pinus sylvestris stands in Valais (Switzerland) and Val d'Aosta (Italy) affected by fire between 1990 and 2006. Soil samples from burnt and non-burnt forests were analyzed with respect to EcM fungi by means of a bioassay. The number of EcM species was significantly lower in samples from recently (2-5 years) burnt sites than non-burnt forest, and increased with time since fire reaching levels of adjacent forests after 15-18 years. Community composition changed after fire but did not converge to that of non-burnt sites over the 18 year period. Only Rhizopogon roseolus and Cenococcum geophilum were abundant in both burnt sites and adjacent forest. Our data indicate fire resistance of some EcM fungal species as well as rapid resilience in terms of species number, but not in species composition. As long as the function of different EcM species for seedling establishment is unknown, the consequences of long-term shifts in EcM community composition for tree recruitment remain unclear.


Asunto(s)
Ecosistema , Incendios , Micorrizas/crecimiento & desarrollo , Pinus sylvestris/microbiología , Microbiología del Suelo , Italia , Suiza
20.
Environ Monit Assess ; 174(1-4): 47-63, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21049285

RESUMEN

At Swiss long-term forest ecosystem research sites, ground vegetation was assessed during the period 1994-2003/2008 following two approaches: (1) visual assessment of the cover of species occurring in sixteen 1 m(2) quadrats, distributed over a 43 × 43 m area, and (2) phytosociological relevés in concentric circular plots of 30, 200, and 500 m(2). We first compared the two approaches with respect to diversity assessment. The number of species recorded in the 16 quadrats was in general higher than in the 30 m(2) plot and it represented 42% to 108% of the number of species recorded in the 500 m(2) plot. In a second step, we tested whether any temporal trends were apparent. In a few cases, a decrease or increase in Landolt's mean indicator values for light, nitrogen availability, soil pH, soil moisture, or temperature was found to be significant. However, these changes were usually restricted to one approach or one area. The only clear trend was detected in an unmanaged former coppice beech stand, for which all survey approaches indicated canopy closure. At another site, vegetation reacted to the local opening of the canopy following windthrow. In a third step, we compared the leaf area index (LAI), measured with an LAI-2000 instrument (Licor, Inc.) over each quadrat, with the indicator value of the vegetation for light (L). Within a site, there was no clear relationship between LAI and L values per quadrat. In contrast, across all sites, the relationship between LAI and L, averaged per site for all available years, was highly significant.


Asunto(s)
Monitoreo del Ambiente , Árboles , Biodiversidad , Recolección de Datos , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA