Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047210

RESUMEN

Sacbrood virus (SBV) is a significant problem that impedes brood development in both eastern and western honeybees. Whole-genome sequencing has become an important tool in researching population genetic variations. Numerous studies have been conducted using multiple techniques to suppress SBV infection in honeybees, but the genetic markers and molecular mechanisms underlying SBV resistance have not been identified. To explore single nucleotide polymorphisms (SNPs), insertions, deletions (Indels), and genes at the DNA level related to SBV resistance, we conducted whole-genome resequencing on 90 Apis cerana cerana larvae raised in vitro and challenged with SBV. After filtering, a total of 337.47 gigabytes of clean data and 31,000,613 high-quality SNP loci were detected in three populations. We used ten databases to annotate 9359 predicted genes. By combining population differentiation index (FST) and nucleotide polymorphisms (π), we examined genome variants between resistant (R) and susceptible (S) larvae, focusing on site integrity (INT < 0.5) and minor allele frequency (MAF < 0.05). A selective sweep analysis with the top 1% and top 5% was used to identify significant regions. Two SNPs on the 15th chromosome with GenBank KZ288474.1_322717 (Guanine > Cytosine) and KZ288479.1_95621 (Cytosine > Thiamine) were found to be significantly associated with SBV resistance based on their associated allele frequencies after SNP validation. Each SNP was authenticated in 926 and 1022 samples, respectively. The enrichment and functional annotation pathways from significantly predicted genes to SBV resistance revealed immune response processes, signal transduction mechanisms, endocytosis, peroxisomes, phagosomes, and regulation of autophagy, which may be significant in SBV resistance. This study presents novel and useful SNP molecular markers that can be utilized as assisted molecular markers to select honeybees resistant to SBV for breeding and that can be used as a biocontrol technique to protect honeybees from SBV.


Asunto(s)
Polimorfismo de Nucleótido Simple , Virus ARN , Abejas/genética , Animales , Larva/genética , Filogenia , Virus ARN/genética
2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982696

RESUMEN

Transcription factors (TFs) play critical roles in mediating the plant response to various abiotic stresses, particularly heat stress. Plants respond to elevated temperatures by modulating the expression of genes involved in diverse metabolic pathways, a regulatory process primarily governed by multiple TFs in a networked configuration. Many TFs, such as WRKY, MYB, NAC, bZIP, zinc finger protein, AP2/ERF, DREB, ERF, bHLH, and brassinosteroids, are associated with heat shock factor (Hsf) families, and are involved in heat stress tolerance. These TFs hold the potential to control multiple genes, which makes them ideal targets for enhancing the heat stress tolerance of crop plants. Despite their immense importance, only a small number of heat-stress-responsive TFs have been identified in rice. The molecular mechanisms underpinning the role of TFs in rice adaptation to heat stress still need to be researched. This study identified three TF genes, including OsbZIP14, OsMYB2, and OsHSF7, by integrating transcriptomic and epigenetic sequencing data analysis of rice in response to heat stress. Through comprehensive bioinformatics analysis, we demonstrated that OsbZIP14, one of the key heat-responsive TF genes, contained a basic-leucine zipper domain and primarily functioned as a nuclear TF with transcriptional activation capability. By knocking out the OsbZIP14 gene in the rice cultivar Zhonghua 11, we observed that the knockout mutant OsbZIP14 exhibited dwarfism with reduced tiller during the grain-filling stage. Under high-temperature treatment, it was also demonstrated that in the OsbZIP14 mutant, the expression of the OsbZIP58 gene, a key regulator of rice seed storage protein (SSP) accumulation, was upregulated. Furthermore, bimolecular fluorescence complementation (BiFC) experiments uncovered a direct interaction between OsbZIP14 and OsbZIP58. Our results suggested that OsbZIP14 acts as a key TF gene through the concerted action of OsbZIP58 and OsbZIP14 during rice filling under heat stress. These findings provide good candidate genes for genetic improvement of rice but also offer valuable scientific insights into the mechanism of heat tolerance stress in rice.


Asunto(s)
Oryza , Humanos , Oryza/metabolismo , RNA-Seq , Secuenciación de Inmunoprecipitación de Cromatina , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta al Choque Térmico/genética , Estrés Fisiológico/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Genes (Basel) ; 13(8)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-36011264

RESUMEN

The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice.


Asunto(s)
Oryza , Termotolerancia , Genes de Plantas , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Termotolerancia/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA