Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Geriatr ; 24(1): 136, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321383

RESUMEN

BACKGROUND: Postoperative delirium (POD) is a severe perioperative complication that may increase mortality and length-of-stay in older patients. Moreover, POD is a major economic burden to any healthcare system. An altered expression of Acetylcholine- and Butyrylcholinesterases (AChE, BuChE) due to an unbalanced neuroinflammatory response to trauma or an operative stimulus has been reported to play an essential role in the development of POD. We investigated if perioperative measurement of cholinesterases (ChEs) can help identifying patients at risk for the occurrence of POD in both, scheduled and emergency surgery patients. METHODS: This monocentric prospective observational cohort study was performed in a tertiary hospital (departments of orthopaedic surgery and traumatology). One hundred and fifty-one patients aged above 75 years were enrolled for scheduled (n = 76) or trauma-related surgery (n = 75). Exclusion criteria were diagnosed dementia and anticholinergic medication. Plasma samples taken pre- and postoperatively were analysed regarding AChE and BuChE activity. Furthermore, perioperative assessment using different cognitive tests was performed. The type of anaesthesia (general vs. spinal anaesthesia) was analysed. Primary outcome was the incidence of POD assessed by the approved Confusion Assessment Method (CAM) in combination with the expression of AChE and BuChE. RESULTS: Of 151 patients included, 38 (25.2%) suffered from POD; 11 (14%) in scheduled and 27 (36%) in emergency patients. AChE levels showed no difference throughout groups or time course. Trauma patients had lower BuChE levels prior to surgery than scheduled patients (p < 0.001). Decline in BuChE levels correlated positively with the incidence of POD (1669 vs. 1175 U/l; p < 0.001). Emergency patients with BuChE levels below 1556 U/L were at highest risk for POD. There were no differences regarding length of stay between groups or incidence of POD. The type of anaesthesia had no influence regarding the incidence of POD. Only Charlson Comorbidity Index and Mini Nutrition Assessment demonstrated reliable strength in respect of POD. CONCLUSIONS: Perioperative measurement of BuChE activity can be used as a tool to identify patients at risk of POD. As a point-of-care test, quick results may alter the patients' course prior to the development of POD. TRIAL REGISTRATION: https://drks.de/search/de/trial/DRKS00017178 .


Asunto(s)
Delirio , Delirio del Despertar , Humanos , Anciano , Estudios Prospectivos , Complicaciones Posoperatorias/epidemiología , Delirio/diagnóstico , Sistemas de Atención de Punto , Dolor/complicaciones , Factores de Riesgo
2.
J Cardiothorac Vasc Anesth ; 37(4): 570-581, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36517335

RESUMEN

The complexity of structural heart interventions has led to a demand for sophisticated periprocedural imaging guidance. Although traditional 2-dimensional (2D) transesophageal techniques are used widely, new-generation 3D ultrasound probes enable high temporal and spatial resolution. Multiplanar reconstruction of acquired 3D datasets has gained considerable momentum for precise imaging and to increase the validity of measurements. Previously, this technique was used after the acquisition of suitable 3D datasets. Recent advances in technology have enabled the use of live mode for multiplanar reconstruction across different ultrasound vendor platforms. The use of live multiplanar reconstruction can enhance the precision in real-time imaging, enable simultaneous visualization of structures of interest in multiple planes, reduce the need for probe manipulation, and thereby contribute to the success of the procedures. In this narrative review, the authors describe the rationale and utility for 3D transesophageal live multiplanar reconstruction, and outline its use for the structural heart interventions of mitral and tricuspid valve edge-to-edge repair, left atrial appendage occlusion, and the Lampoon procedure. A 3D transesophageal echocardiogram with live-multiplanar reconstruction has the potential to advance guidance of these complex interventions.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Ecocardiografía Tridimensional , Humanos , Ecocardiografía Transesofágica/métodos , Válvula Tricúspide , Ecocardiografía Tridimensional/métodos
3.
BMC Musculoskelet Disord ; 24(1): 791, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803313

RESUMEN

BACKGROUND: Low back pain is a widely prevalent symptom and the foremost cause of disability on a global scale. Although various degenerative imaging findings observed on magnetic resonance imaging (MRI) have been linked to low back pain and disc herniation, none of them can be considered pathognomonic for this condition, given the high prevalence of abnormal findings in asymptomatic individuals. Nevertheless, there is a lack of knowledge regarding whether radiomics features in MRI images combined with clinical features can be useful for prediction modeling of treatment success. The objective of this study was to explore the potential of radiomics feature analysis combined with clinical features and artificial intelligence-based techniques (machine learning/deep learning) in identifying MRI predictors for the prediction of outcomes after lumbar disc herniation surgery. METHODS: We included n = 172 patients who underwent discectomy due to disc herniation with preoperative T2-weighted MRI examinations. Extracted clinical features included sex, age, alcohol and nicotine consumption, insurance type, hospital length of stay (LOS), complications, operation time, ASA score, preoperative CRP, surgical technique (microsurgical versus full-endoscopic), and information regarding the experience of the performing surgeon (years of experience with the surgical technique and the number of surgeries performed at the time of surgery). The present study employed a semiautomatic region-growing volumetric segmentation algorithm to segment herniated discs. In addition, 3D-radiomics features, which characterize phenotypic differences based on intensity, shape, and texture, were extracted from the computed magnetic resonance imaging (MRI) images. Selected features identified by feature importance analyses were utilized for both machine learning and deep learning models (n = 17 models). RESULTS: The mean accuracy over all models for training and testing in the combined feature set was 93.31 ± 4.96 and 88.17 ± 2.58. The mean accuracy for training and testing in the clinical feature set was 91.28 ± 4.56 and 87.69 ± 3.62. CONCLUSIONS: Our results suggest a minimal but detectable improvement in predictive tasks when radiomics features are included. However, the extent of this advantage should be considered with caution, emphasizing the potential of exploring multimodal data inputs in future predictive modeling.


Asunto(s)
Desplazamiento del Disco Intervertebral , Dolor de la Región Lumbar , Humanos , Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Desplazamiento del Disco Intervertebral/cirugía , Desplazamiento del Disco Intervertebral/complicaciones , Dolor de la Región Lumbar/diagnóstico por imagen , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/cirugía , Inteligencia Artificial , Resultado del Tratamiento , Discectomía/métodos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Vértebras Lumbares/patología , Estudios Retrospectivos
4.
Chem Rev ; 120(24): 13273-13311, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33089988

RESUMEN

Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.


Asunto(s)
Bacterias/metabolismo , Monóxido de Carbono/metabolismo , Microbioma Gastrointestinal/fisiología , Animales , Fenómenos Fisiológicos Bacterianos , Humanos , Simbiosis
5.
Age Ageing ; 51(2)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35136896

RESUMEN

BACKGROUND: health-related quality of life (HRQoL) is an important patient-centred outcome in patients surviving ICU admission for COVID-19. It is currently not clear which domains of the HRQoL are most affected. OBJECTIVE: to quantify HRQoL in order to identify areas of interventions. DESIGN: prospective observation study. SETTING: admissions to European ICUs between March 2020 and February 2021. SUBJECTS: patients aged 70 years or older admitted with COVID-19 disease. METHODS: collected determinants include SOFA-score, Clinical Frailty Scale (CFS), number and timing of ICU procedures and limitation of care, Katz Activities of Daily Living (ADL) dependence score. HRQoL was assessed at 3 months after ICU admission with the Euro-QoL-5D-5L questionnaire. An outcome of ≥4 on any of Euro-QoL-5D-5L domains was considered unfavourable. RESULTS: in total 3,140 patients from 14 European countries were included in this study. Three months after inclusion, 1,224 patients (39.0%) were alive and the EQ-5D-5L from was obtained. The CFS was associated with an increased odds ratio for an unfavourable HRQoL outcome after 3 months; OR 1.15 (95% confidence interval (CI): 0.71-1.87) for CFS 2 to OR 4.33 (95% CI: 1.57-11.9) for CFS ≧ 7. The Katz ADL was not statistically significantly associated with HRQoL after 3 months. CONCLUSIONS: in critically ill old intensive care patients suffering from COVID-19, the CFS is associated with the subjectively perceived quality of life. The CFS on admission can be used to inform patients and relatives on the risk of an unfavourable qualitative outcome if such patients survive.


Asunto(s)
COVID-19 , Calidad de Vida , Actividades Cotidianas , Anciano , Humanos , Unidades de Cuidados Intensivos , Estudios Prospectivos , SARS-CoV-2
6.
J Cardiothorac Vasc Anesth ; 36(3): 739-745, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34763979

RESUMEN

Atrial fibrillation after cardiac surgery (AFACS) is a serious postoperative complication. There is significant research interest in this field but also relevant heterogeneity in reported AFACS definitions and approaches used for its identification. Few data exist on the extent of this variation in clinical studies. The authors reviewed the literature since 2001 and included manuscripts reporting outcomes of AFACS in adults. They excluded smaller studies and studies in which patients did not undergo a sternotomy. The documented protocol in each manuscript was analyzed according to six different categories to determine how AFACS was defined, which techniques were used to identify it, and the inclusion and/or exclusion criteria. They also noted when a category was not described in the documented protocol. The authors identified 302 studies, of which 92 were included. Sixty-two percent of studies were randomized controlled trials. There was significant heterogeneity in the manuscripts, including the exclusion of patients with preoperative AF, the definition and duration of AF needed to meet the primary endpoint, the type of screening approach (continuous, episodic, or opportunistic), the duration of monitoring during the study period in days, the diagnosis with predefined electrocardiogram criteria, and the requirement for independent confirmation by study investigators. Furthermore, the definitions of these criteria frequently were not described. Consistent reporting standards for AFACS research are needed to advance scientific progress in the field. The authors here propose pragmatic standards for trial design and reporting standards. These include adequate sample size estimation, a clear definition of the AFACS endpoints, and a protocol for AFACS detection.


Asunto(s)
Fibrilación Atrial , Procedimientos Quirúrgicos Cardíacos , Adulto , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Fibrilación Atrial/prevención & control , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Electrocardiografía , Humanos , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Int J Mol Sci ; 23(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35628328

RESUMEN

BACKGROUND: Neuronal ischemia-reperfusion injury (IRI), such as it can occur in glaucoma or strokes, is associated with neuronal cell death and irreversible loss of function of the affected tissue. Hydrogen sulfide (H2S) is considered a potentially neuroprotective substance, but the most effective route of application and the underlying mechanism remain to be determined. METHODS: Ischemia-reperfusion injury was induced in rats by a temporary increase in intraocular pressure (1 h). H2S was then applied by inhalation (80 ppm at 0, 1.5, and 3 h after reperfusion) or by intravenous administration of the slow-releasing H2S donor GYY 4137. After 24 h, the retinas were harvested for Western blotting, qPCR, and immunohistochemical staining. Retinal ganglion cell survival was evaluated 7 days after ischemia. RESULTS: Both inhalative and intravenously delivered H2S reduced retinal ganglion cell death with a better result from inhalative application. H2S inhalation for 1.5 h, as well as GYY 4137 treatment, increased p38 phosphorylation. Both forms of application enhanced the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and inhalation showed a significant increase at all three time points. H2S treatment also reduced apoptotic and inflammatory markers, such as caspase-3, intracellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor (VEGF), and inducible nitric oxide synthase (iNOS). The protective effect of H2S was partly abolished by the ERK1/2 inhibitor PD98059. Inhalative H2S also reduced the heat shock response including heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) and the expression of radical scavengers such as superoxide dismutases (SOD1, SOD2) and catalase. CONCLUSION: Hydrogen sulfide acts, at least in part, via the mitogen-activated protein kinase (MAPK) ERK1/2 to reduce apoptosis and inflammation. Both inhalative H2S and intravenous GYY 4137 administrations can improve neuronal cell survival.


Asunto(s)
Sulfuro de Hidrógeno , Daño por Reperfusión , Administración Intravenosa , Animales , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Isquemia/metabolismo , Neuroprotección , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Nitric Oxide ; 111-112: 45-63, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33838343

RESUMEN

It is estimated that 10% of carbon throughout the cosmos is in the form of carbon monoxide (CO). Earth's earliest prebiotic atmosphere included the trinity of gasotransmitters CO, nitric oxide (NO), and hydrogen sulfide (H2S), for which all of life has co-evolved with. The history of CO can be loosely traced to mythological and prehistoric origins with rudimentary understanding emerging in the middle ages. Ancient literature is focused on CO's deadly toxicity which is understandable in the context of our primitive relationship with coal and fire. Scientific inquiry into CO appears to have emerged throughout the 1700s followed by chemical and toxicological profiling throughout the 1800s. Despite CO's ghastly reputation, several of the 18th and 19th century scientists suggested a therapeutic application of CO. Since 2000, the fundamental understanding of CO as a deadly nuisance has undergone a paradigm shift such that CO is now recognized as a neurotransmitter and viable pharmaceutical candidate. This review is intended to provide a brief history on the trace origins pertaining to endogenous formation and therapeutic application of CO.


Asunto(s)
Monóxido de Carbono/historia , Monóxido de Carbono/uso terapéutico , Animales , Monóxido de Carbono/fisiología , Monóxido de Carbono/toxicidad , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Humanos
9.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576259

RESUMEN

BACKGROUND: The ischemia-reperfusion injury (IRI) of neuronal tissue, such as the brain and retina, leads to possible cell death and loss of function. Current treatment options are limited, but preliminary observations suggest a protective effect of hydrogen sulfide (H2S). However, the dosage, timing, and mechanism of inhaled H2S treatment after IRI requires further exploration. METHODS: We investigated possible neuroprotective effects of inhaled H2S by inducing retinal ischemia-reperfusion injury in rats for the duration of 1 h (120 mmHg), followed by the administration of hydrogen sulfide (H2S) for 1 h at different time points (0, 1.5, and 3 h after the initiation of reperfusion) and at different H2S concentrations (120, 80, and 40 ppm). We quantified the H2S effect by conducting retinal ganglion cell counts in fluorogold-labeled animals 7 days after IRI. The retinal tissue was harvested after 24 h for molecular analysis, including qPCR and Western blotting. Apoptotic and inflammatory mediators, transcription factors, and markers for oxidative stress were investigated. Histological analyses of the retina and the detection of inflammatory cytokines in serum assays were also performed. RESULTS: The effects of inhaled H2S were most evident at a concentration of 80 ppm administered 1.5 h after IRI. H2S treatment increased the expression of anti-apoptotic Bcl-2, decreased pro-apoptotic Bax expression, reduced the release of the inflammatory cytokines IL-1ß and TNF-α, attenuated NF-κB p65, and enhanced Akt phosphorylation. H2S also downregulated NOX4 and cystathionine ß-synthase. Histological analyses illustrated a reduction in TNF-α in retinal ganglion cells and lower serum levels of TNF-α in H2S-treated animals after IRI. CONCLUSION: After neuronal IRI, H2S mediates neuroprotection in a time- and dose-dependent manner. The H2S treatment modulated transcription factor NF-κB activation and reduced retinal inflammation.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Retina/efectos de los fármacos , Animales , Apoptosis , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Inflamación , Masculino , NADPH Oxidasa 4/metabolismo , FN-kappa B/metabolismo , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fosforilación , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Factores de Tiempo
10.
Crit Care Med ; 48(4): e299-e307, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205620

RESUMEN

OBJECTIVES: Neurologic damage following cardiac arrest remains a major burden for modern resuscitation medicine. Cardiopulmonary resuscitation with extracorporeal circulatory support holds the potential to reduce morbidity and mortality. Furthermore, the endogenous gasotransmitter carbon monoxide attracts attention in reducing cerebral injury. We hypothesize that extracorporeal resuscitation with additional carbon monoxide application reduces neurologic damage. DESIGN: Randomized, controlled animal study. SETTING: University research laboratory. SUBJECTS: Landrace-hybrid pigs. INTERVENTIONS: In a porcine model, carbon monoxide was added using a novel extracorporeal releasing system after resuscitation from cardiac arrest. MEASUREMENTS AND MAIN RESULTS: As markers of cerebral function, neuromonitoring modalities (somatosensory-evoked potentials, cerebral oximetry, and transcranial Doppler ultrasound) were used. Histopathologic damage and molecular markers (caspase-3 activity and heme oxygenase-1 expression) were analyzed. Cerebral oximetry showed fast rise in regional oxygen saturation after carbon monoxide treatment at 0.5 hours compared with extracorporeal resuscitation alone (regional cerebral oxygen saturation, 73% ± 3% vs 52% ± 8%; p < 0.05). Median nerve somatosensory-evoked potentials showed improved activity upon carbon monoxide treatment, whereas post-cardiac arrest cerebral perfusion differences were diminished. Histopathologic damage scores were reduced compared with customary resuscitation strategies (hippocampus: sham, 0.4 ± 0.2; cardiopulmonary resuscitation, 1.7 ± 0.4; extracorporeal cardiopulmonary resuscitation, 2.3 ± 0.2; extracorporeal cardiopulmonary resuscitation with carbon monoxide application [CO-E-CPR], 0.9 ± 0.3; p < 0.05). Furthermore, ionized calcium-binding adaptor molecule 1 staining revealed reduced damage patterns upon carbon monoxide treatment. Caspase-3 activity (cardiopulmonary resuscitation, 426 ± 169 pg/mL; extracorporeal cardiopulmonary resuscitation, 240 ± 61 pg/mL; CO-E-CPR, 89 ± 26 pg/mL; p < 0.05) and heme oxygenase-1 (sham, 1 ± 0.1; cardiopulmonary resuscitation, 2.5 ± 0.4; extracorporeal cardiopulmonary resuscitation, 2.4 ± 0.2; CO-E-CPR, 1.4 ± 0.2; p < 0.05) expression were reduced after carbon monoxide exposure. CONCLUSIONS: Carbon monoxide application during extracorporeal resuscitation reduces injury patterns in neuromonitoring and decreases histopathologic cerebral damage by reducing apoptosis. This may lay the basis for further clinical translation of this highly salutary substance.


Asunto(s)
Encéfalo , Monóxido de Carbono , Reanimación Cardiopulmonar , Oxigenación por Membrana Extracorpórea , Paro Cardíaco , Animales , Masculino , Encéfalo/irrigación sanguínea , Monóxido de Carbono/metabolismo , Monóxido de Carbono/uso terapéutico , Reanimación Cardiopulmonar/métodos , Circulación Cerebrovascular/fisiología , Oxigenación por Membrana Extracorpórea/métodos , Paro Cardíaco/terapia , Porcinos , Resultado del Tratamiento
11.
Crit Care Med ; 48(3): e241-e248, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31856000

RESUMEN

OBJECTIVES: Lung-protective ventilation for acute respiratory distress syndrome aims for providing sufficient oxygenation and carbon dioxide clearance, while limiting the harmful effects of mechanical ventilation. "Flow-controlled ventilation", providing a constant expiratory flow, has been suggested as a new lung-protective ventilation strategy. The aim of this study was to test whether flow-controlled ventilation attenuates lung injury in an animal model of acute respiratory distress syndrome. DESIGN: Preclinical, randomized controlled animal study. SETTING: Animal research facility. SUBJECTS: Nineteen German landrace hybrid pigs. INTERVENTION: Flow-controlled ventilation (intervention group) or volume-controlled ventilation (control group) with identical tidal volume (7 mL/kg) and positive end-expiratory pressure (9 cm H2O) after inducing acute respiratory distress syndrome with oleic acid. MEASUREMENTS AND MAIN RESULTS: PaO2 and PaCO2, minute volume, tracheal pressure, lung aeration measured via CT, alveolar wall thickness, cell infiltration, and surfactant protein A concentration in bronchoalveolar lavage fluid. Five pigs were excluded leaving n equals to 7 for each group. Compared with control, flow-controlled ventilation elevated PaO2 (154 ± 21 vs 105 ± 9 torr; 20.5 ± 2.8 vs 14.0 ± 1.2 kPa; p = 0.035) and achieved comparable PaCO2 (57 ± 3 vs 54 ± 1 torr; 7.6 ± 0.4 vs 7.1 ± 0.1 kPa; p = 0.37) with a lower minute volume (6.4 ± 0.5 vs 8.7 ± 0.4 L/min; p < 0.001). Inspiratory plateau pressure was comparable in both groups (31 ± 2 vs 34 ± 2 cm H2O; p = 0.16). Flow-controlled ventilation increased normally aerated (24% ± 4% vs 10% ± 2%; p = 0.004) and decreased nonaerated lung volume (23% ± 6% vs 38% ± 5%; p = 0.033) in the dependent lung region. Alveolar walls were thinner (5.5 ± 0.1 vs 7.8 ± 0.2 µm; p < 0.0001), cell infiltration was lower (20 ± 2 vs 32 ± 2 n/field; p < 0.0001), and normalized surfactant protein A concentration was higher with flow-controlled ventilation (1.1 ± 0.04 vs 1.0 ± 0.03; p = 0.039). CONCLUSIONS: Flow-controlled ventilation enhances lung aeration in the dependent lung region and consequently improves gas exchange and attenuates lung injury. Control of the expiratory flow may provide a novel option for lung-protective ventilation.


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Modelos Animales de Enfermedad , Distribución Aleatoria , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Porcinos , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control
12.
Am J Physiol Renal Physiol ; 317(6): F1572-F1581, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31482730

RESUMEN

Deleterious consequences like acute kidney injury frequently occur upon successful resuscitation from cardiac arrest. Extracorporeal life support is increasingly used to overcome high cardiac arrest mortality. Carbon monoxide (CO) is an endogenous gasotransmitter, capable of reducing renal injury. In our study, we hypothesized that addition of CO to extracorporeal resuscitation hampers severity of renal injury in a porcine model of cardiac arrest. Hypoxic cardiac arrest was induced in pigs. Animals were resuscitated using a conventional [cardiopulmonary resuscitation (CPR)], an extracorporeal (E-CPR), or a CO-assisted extracorporeal (CO-E-CPR) protocol. CO was applied using a membrane-controlled releasing system. Markers of renal injury were measured, and histopathological analyses were carried out. We investigated renal pathways involving inflammation as well as apoptotic cell death. No differences in serum neutrophil gelatinase-associated lipocalin (NGAL) were detected after CO treatment compared with Sham animals (Sham 71 ± 7 and CO-E-CPR 95 ± 6 ng/mL), while NGAL was increased in CPR and E-CPR groups (CPR 135 ± 11 and E-CPR 124 ± 5 ng/mL; P < 0.05). Evidence for histopathological damage was abrogated after CO application. CO increased renal heat shock protein 70 expression and reduced inducible cyclooxygenase 2 (CPR: 60 ± 8; E-CPR 56 ± 8; CO-E-CPR 31 ± 3 µg/mL; P < 0.05). Caspase 3 activity was decreased (CPR 1,469 ± 276; E-CPR 1,670 ± 225; CO-E-CPR 755 ± 83 pg/mL; P < 0.05). Furthermore, we found a reduction in renal inflammatory signaling upon CO treatment. Our data demonstrate improved renal function by extracorporeal CO treatment in a porcine model of cardiac arrest. CO reduced proinflammatory and proapoptotic signaling, characterizing beneficial aspects of a novel treatment option to overcome high mortality.


Asunto(s)
Monóxido de Carbono/uso terapéutico , Reanimación Cardiopulmonar/métodos , Circulación Extracorporea/métodos , Paro Cardíaco/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Enfermedades Renales/prevención & control , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/sangre , Monóxido de Carbono/administración & dosificación , Paro Cardíaco/complicaciones , Paro Cardíaco/patología , Inflamación/patología , Enfermedades Renales/etiología , Enfermedades Renales/patología , Pruebas de Función Renal , Lipocalina 2/metabolismo , Porcinos
13.
Am J Physiol Heart Circ Physiol ; 316(3): H751-H761, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30681364

RESUMEN

Extracorporeal circulation can be accompanied by increased vascular permeability leading to pathological fluid balance and organ dysfunction. The second messenger cAMP is involved in capillary permeability and maintains endothelial integrity. The aim of the present study was to evaluate the effect of phosphodiesterase-4 (PDE4) inhibition with rolipram on extracorporeal circulation-induced capillary leakage, microcirculatory dysfunction, and organ injury in rodents. Rats were randomly allocated to the following groups: sham ( n = 5), venoarterial extracorporeal circulation [extracorporeal life support (ECLS), n = 7], ECLS + rolipram ( n = 7), extracorporeal resuscitation (ECPR; n = 7), and ECPR + rolipram ( n = 7). In the groups that underwent ECPR, ECLS-based cardiopulmonary resuscitation (ECPR) was performed after the induction of hypoxic cardiac arrest. Upon return of spontaneous circulation, rolipram was administered intravenously. The mesenteric microcirculation was studied using intravital microscopy, and organ specimens were harvested upon completion of the study. ECLS and ECPR induced a proinflammatory response (cytokines IL-1ß, IL-6, and TNF-α). Although PDE4 expression was upregulated in vascular tissue, PDE4 inhibition abrogated impaired microcirculation and capillary leak (albumin extravasation of the sham group: 1 ± 0.03-fold, ECLS group: 1.2 ± 0.05-fold, ECLS + rolipram group: 0.99 ± 0.04-fold, ECPR group: 1.6 ± 0.04-fold, and ECPR + rolipram group: 1.06 ± 0.02-fold from the sham group, P < 0.05). PDE4 inhibition led to stabilization of vascular cAMP levels but did not affect cytokine levels. Capillary leak was reduced, as demonstrated by the decrease of the systemic biomarkers soluble vascular-endothelial cadherin and activated complement 3. Histological analysis revealed reduced injury to the lungs and kidneys after PDE4 inhibition, with a significant decrease in systemic renal damage markers. Our findings demonstrate that extracorporeal circulation causes an inflammatory reaction associated with decreased vascular cAMP levels, increased vascular permeability, and impaired microcirculation. PDE4 inhibition proved to be capable of reducing these side effects in ECLS and ECPR, leading to reduced microcirculatory, renal, and pulmonary injury. NEW & NOTEWORTHY Various complications are common after extracorporeal circulation. Among these, endothelial injury may cause impaired microcirculation and capillary leak. Here, we report that phosphodiesterase-4 inhibition targeting endothelial cAMP is capable of reducing microvascular complications in a rodent model of extracorporeal resuscitation. Microcirculation and vascular permeability are influenced without targeting extracorporeal circulation-induced inflammation. Thus, pulmonary and renal organ protection may be conferred.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Oxigenación por Membrana Extracorpórea/efectos adversos , Microcirculación/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Animales , Síndrome de Fuga Capilar/etiología , Síndrome de Fuga Capilar/prevención & control , Gasto Cardíaco/efectos de los fármacos , Reanimación Cardiopulmonar , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/biosíntesis , Citocinas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Resucitación , Rolipram/farmacología , Sistemas de Mensajero Secundario
14.
Am J Emerg Med ; 36(10): 1738-1744, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29395757

RESUMEN

AIM: Standardized modeling of cardiac arrest and cardiopulmonary resuscitation (CPR) is crucial to evaluate new treatment options. Experimental porcine models are ideal, closely mimicking human-like physiology. However, anteroposterior chest diameter differs significantly, being larger in pigs and thus poses a challenge to achieve adequate perfusion pressures and consequently hemodynamics during CPR, which are commonly achieved during human resuscitation. The aim was to prove that standardized resuscitation is feasible and renders adequate hemodynamics and perfusion in pigs, using a specifically designed resuscitation board for a pneumatic chest compression device. METHODS AND RESULTS: A "porcine-fit" resuscitation board was designed for our experiments to optimally use a pneumatic compression device (LUCAS® II, Physio-Control Inc.), which is widely employed in emergency medicine and ideal in an experimental setting due to its high standardization. Asphyxial cardiac arrest was induced in 10 German hybrid landrace pigs and cardiopulmonary resuscitation was performed according to ERC/AHA 2015 guidelines with mechanical chest compressions. Hemodynamics were measured in the carotid and pulmonary artery. Furthermore, arterial blood gas was drawn to assess oxygenation and tissue perfusion. The custom-designed resuscitation board in combination with the LUCAS® device demonstrated highly sufficient performance regarding hemodynamics during CPR (mean arterial blood pressure, MAP 46 ±â€¯1 mmHg and mean pulmonary artery pressure, mPAP of 36 ±â€¯1 mmHg over the course of CPR). MAP returned to baseline values at 2 h after ROSC (80 ±â€¯4 mmHg), requiring moderate doses of vasopressors. Furthermore, stroke volume and contractility were analyzed using pulse contour analysis (106 ±â€¯3 ml and 1097 ±â€¯22 mmHg/s during CPR). Blood gas analysis revealed CPR-typical changes, normalizing in the due course. Thermodilution parameters did not show persistent intravascular volume shift. CONCLUSION: Standardized cardiopulmonary resuscitation is feasible in a porcine model, achieving adequate hemodynamics and consecutive tissue perfusion of consistent quality.


Asunto(s)
Reanimación Cardiopulmonar/métodos , Paro Cardíaco/terapia , Animales , Presión Arterial , Análisis de los Gases de la Sangre , Reanimación Cardiopulmonar/instrumentación , Modelos Animales de Enfermedad , Hemodinámica/fisiología , Humanos , Porcinos
18.
Sci Rep ; 14(1): 5687, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453964

RESUMEN

In this study, we aimed to develop a novel prognostic algorithm for oral squamous cell carcinoma (OSCC) using a combination of pathogenomics and AI-based techniques. We collected comprehensive clinical, genomic, and pathology data from a cohort of OSCC patients in the TCGA dataset and used machine learning and deep learning algorithms to identify relevant features that are predictive of survival outcomes. Our analyses included 406 OSCC patients. Initial analyses involved gene expression analyses, principal component analyses, gene enrichment analyses, and feature importance analyses. These insights were foundational for subsequent model development. Furthermore, we applied five machine learning/deep learning algorithms (Random Survival Forest, Gradient Boosting Survival Analysis, Cox PH, Fast Survival SVM, and DeepSurv) for survival prediction. Our initial analyses revealed relevant gene expression variations and biological pathways, laying the groundwork for robust feature selection in model building. The results showed that the multimodal model outperformed the unimodal models across all methods, with c-index values of 0.722 for RSF, 0.633 for GBSA, 0.625 for FastSVM, 0.633 for CoxPH, and 0.515 for DeepSurv. When considering only important features, the multimodal model continued to outperform the unimodal models, with c-index values of 0.834 for RSF, 0.747 for GBSA, 0.718 for FastSVM, 0.742 for CoxPH, and 0.635 for DeepSurv. Our results demonstrate the potential of pathogenomics and AI-based techniques in improving the accuracy of prognostic prediction in OSCC, which may ultimately aid in the development of personalized treatment strategies for patients with this devastating disease.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Inteligencia Artificial , Neoplasias de la Boca/genética
19.
Neural Regen Res ; 18(6): 1371-1377, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36453425

RESUMEN

The noble gas argon has the potential to protect neuronal cells from cell death. So far, this effect has been studied in treatment after acute damage. Preconditioning using argon has not yet been investigated. In this study, human neuroblastoma SH-SY5Y cells were treated with different concentrations of argon (25%, 50%, and 74%; 21% O2, 5% CO2, balance nitrogen) at different time intervals before inflicting damage with rotenone (20 µM, 4 hours). Apoptosis was determined by flow cytometry after annexin V and propidium iodide staining. Surface expressions of Toll-like receptors 2 and 4 were also examined. Cells were also processed for analysis by western blot and qPCR to determine the expression of apoptotic and inflammatory proteins, such as extracellular-signal regulated kinase (ERK1/2), nuclear transcription factor-κB (NF-κB), protein kinase B (Akt), caspase-3, Bax, Bcl-2, interleukin-8, and heat shock proteins. Immunohistochemical staining was performed for TLR2 and 4 and interleukin-8. Cells were also pretreated with OxPAPC, an antagonist of TLR2 and 4 to elucidate the molecular mechanism. Results showed that argon preconditioning before rotenone application caused a dose-dependent but not a time-dependent reduction in the number of apoptotic cells. Preconditioning with 74% argon for 2 hours was used for further experiments showing the most promising results. Argon decreased the surface expression of TLR2 and 4, whereas OxPAPC treatment partially abolished the protective effect of argon. Argon increased phosphorylation of ERK1/2 but decreased NF-κB and Akt. Preconditioning inhibited mitochondrial apoptosis and the heat shock response. Argon also suppressed the expression of the pro-inflammatory cytokine interleukin-8. Immunohistochemistry confirmed the alteration of TLRs and interleukin-8. OxPAPC reversed the argon effect on ERK1/2, Bax, Bcl-2, caspase-3, and interleukin-8 expression, but not on NF-κB and the heat shock proteins. Taken together, argon preconditioning protects against apoptosis of neuronal cells and mediates its action via Toll-like receptors. Argon may represent a promising therapeutic alternative in various clinical settings, such as the treatment of stroke.

20.
Bioengineering (Basel) ; 10(9)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37760174

RESUMEN

Lumbar spine magnetic resonance imaging (MRI) is a critical diagnostic tool for the assessment of various spinal pathologies, including degenerative disc disease, spinal stenosis, and spondylolisthesis. The accurate identification and quantification of the dural sack cross-sectional area are essential for the evaluation of these conditions. Current manual measurement methods are time-consuming and prone to inter-observer variability. Our study developed and validated deep learning models, specifically U-Net, Attention U-Net, and MultiResUNet, for the automated detection and measurement of the dural sack area in lumbar spine MRI, using a dataset of 515 patients with symptomatic back pain and externally validating the results based on 50 patient scans. The U-Net model achieved an accuracy of 0.9990 and 0.9987 on the initial and external validation datasets, respectively. The Attention U-Net model reported an accuracy of 0.9992 and 0.9989, while the MultiResUNet model displayed a remarkable accuracy of 0.9996 and 0.9995, respectively. All models showed promising precision, recall, and F1-score metrics, along with reduced mean absolute errors compared to the ground truth manual method. In conclusion, our study demonstrates the potential of these deep learning models for the automated detection and measurement of the dural sack cross-sectional area in lumbar spine MRI. The proposed models achieve high-performance metrics in both the initial and external validation datasets, indicating their potential utility as valuable clinical tools for the evaluation of lumbar spine pathologies. Future studies with larger sample sizes and multicenter data are warranted to validate the generalizability of the model further and to explore the potential integration of this approach into routine clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA