Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Anal Chem ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38343116

RESUMEN

The mammalian glycome is structurally complex and diverse, composed of many glycan classes such as N- and O-linked glycans, glycosaminoglycans (GAGs), glycosphingolipids (GSLs), and other distinct glycan features such as polysialic acids (PolySia), sulfation, and proteoglycan attachment stubs. Various methods are used to analyze these different components of the glycome, but they require prefractionated/partitioned samples to target each glycan class individually. To address this need for a knowledge of the relationship between the different glycan components of a biological system, we developed a sequential release workflow for analysis of multiple conjugated glycan classes (PolySia, GAGs, GSL glycans, N-glycans, and O-glycans) from the same tissue lysate, termed SSSMuG─Same Sample Sequential Multi-Glycomics. With this sequential glycan release approach, five glycan classes were characterized (or four glycan classes plus proteomics) using enzymatic or chemical release from a single sample immobilized on a polyvinylidene difluoride membrane. The various released glycan classes were then analyzed by HPLC and MS techniques using commonly available analytical setups. Compared to single glycan class release approaches, SSSMuG was able to identify more glycans and more proteins with higher-intensity analytical peaks and provide a better comparative normalization of the different glycan classes of the complex glycome. To this end, the SSSMuG technology workflow will be a foundation for a paradigm shift in the field, transforming glycoanalytics and facilitating the push toward multiglycomics and systems glycobiology.

2.
Analyst ; 149(6): 1774-1783, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38373007

RESUMEN

Surface-enhanced Raman scattering (SERS) nanotags functionalized with lectins as the biological recognition element can be used to target the carbohydrate portion of carbohydrate-carrying molecules (glycoconjugates). An investigation of the optical stability of such functionalized SERS nanotags is an essential initial step before future application and quantification of surface glycan biomarkers on cells and extracellular vesicles. Herein, we report an innovative approach to evaluate the SERS stability of lectin-conjugated nanotags by investigating any possible interfering lectin-lectin interactions in a mixture of different lectin-conjugated SERS nanotags, as well as an assessment of lectin-glycan interaction by mixing wheat germ agglutinin (WGA)-conjugated SERS nanotags with different glycoproteins. No lectin cross-reactivity was found in the mixture of lectin-conjugated SERS nanotags, evidenced by the constant SERS intensity. Additionally, the results showed that the lectins conjugated to SERS nanotags retain their ability to interact with glycans, as evidenced by the changes in the nanotag color and extinction spectra. Their SERS intensity remained constant as supported by finite-element method (FEM) simulation results, demonstrating a high SERS stability and selectivity of lectin-conjugated nanotags towards multiplex applications.


Asunto(s)
Vesículas Extracelulares , Nanopartículas del Metal , Lectinas , Biomarcadores , Espectrometría Raman/métodos , Polisacáridos
3.
J Proteome Res ; 20(2): 1313-1327, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33383989

RESUMEN

Human adipose tissue contains a major source of adipose-derived stem cells (ADSCs) that have the ability to differentiate into various cell types: in vitro, ADSCs can differentiate into mesenchymal lineages including adipocytes, while in vivo, ADSCs become mature adipocytes. Protein glycosylation has been shown to change in stem cell differentiation, and while ADSCs have been acknowledged for their therapeutic potential, little is known about protein glycosylation during human ADSC adipogenic differentiation. In the present study, the global membrane protein glycosylation of native adipocytes was compared to ADSCs from the same individuals as a model of in vivo adipogenesis. For in vitro adipogenesis, ADSCs were adipogenically differentiated in cell culture using an optimized, large-scale differentiation procedure. The membrane glycome of the differentiated ADSCs (dADSCs) was compared with mature adipocytes and the progenitor ADSCs. A total of 137 glycan structures were characterized across the three cell types using PGC-LC coupled with negative-ion electrospray ionization mass spectrometry (ESI-MS)/MS. Significantly higher levels of bisecting GlcNAc-type N-glycans were detected in mature adipocytes (32.1% of total glycans) and in in vitro dADSC progeny (1.9% of total glycans) compared to ADSCs. This was further correlated by the mRNA expression of the MGAT3 gene responsible for the enzymatic synthesis of this structural type. The bisecting GlcNAc structures were found on the majority of human native adipocyte membrane proteins, suggesting an important role in human adipocyte biology. Core fucosylation was also significantly increased during in vivo adipogenesis but did not correlate with an increase in Fut8 gene transcript. Unexpectedly, low abundance structures carrying rare ß-linked Gal-Gal termini were also detected. Overall, the N-glycan profiles of the in vitro differentiated progeny did not reflect native adipocytes, and the results show that bisecting GlcNAc structures are a characteristic feature of human adipocyte membrane protein N-glycosylation. Raw MS files are available on GlycoPOST (ID: GPST000153 https://glycopost.glycosmos.org/).


Asunto(s)
Adipocitos , Adipogénesis , Tejido Adiposo , Diferenciación Celular , Glicosilación , Humanos , Polisacáridos
4.
Bioinformatics ; 35(4): 688-690, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30101321

RESUMEN

SUMMARY: Many eukaryotic proteins are modified by N-glycans. Liquid chromatography (ultra-performance -UPLC and high-performance-HPLC) coupled with mass spectrometry (MS) is conventionally used to characterize N-glycan structures. Software can automatically assign glycan structures by matching their observed retention times and masses with standardized values in reference databases. However, more precise confirmation of N-glycan structures can be derived using exoglycosidases, enzymes that remove specific monosaccharides from glycans. Exoglycosidase removal of monosaccharides results in signature peak shifts, in both UPLC and MS1, yielding an effective way to verify N-glycan structure with high detail (down to the position and isomeric linkage of each monosaccharide). Because manual interpretation of exoglycosidase data is complex and time consuming, we developed GlycanAnalyzer, a web application that pattern matches N-glycan peak shifts following exoglycosidase digestion and automates structure assignments. GlycanAnalyzer significantly improves assignment accuracy over other auto-assignment methods on tests with a monoclonal antibody and four glycan standards (100% versus 82% for the next best software). By automating data interpretation, GlycanAnalyzer enables the easier use of exoglycosidases to precisely define N-glycan structure. AVAILABILITY AND IMPLEMENTATION: http://glycananalyzer.neb.com. Datasets available online. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Glicósido Hidrolasas/química , Polisacáridos/química , Programas Informáticos , Cromatografía Líquida de Alta Presión , Internet , Espectrometría de Masas
5.
Proteomics ; 19(21-22): e1900010, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419058

RESUMEN

While aberrant protein glycosylation is a recognized characteristic of human cancers, advances in glycoanalytics continue to discover new associations between glycoproteins and tumorigenesis. This glycomics-centric study investigates a possible link between protein paucimannosylation, an under-studied class of human N-glycosylation [Man1-3 GlcNAc2 Fuc0-1 ], and cancer. The paucimannosidic glycans (PMGs) of 34 cancer cell lines and 133 tissue samples spanning 11 cancer types and matching non-cancerous specimens are profiled from 467 published and unpublished PGC-LC-MS/MS N-glycome datasets collected over a decade. PMGs, particularly Man2-3 GlcNAc2 Fuc1 , are prominent features of 29 cancer cell lines, but the PMG level varies dramatically across and within the cancer types (1.0-50.2%). Analyses of paired (tumor/non-tumor) and stage-stratified tissues demonstrate that PMGs are significantly enriched in tumor tissues from several cancer types including liver cancer (p = 0.0033) and colorectal cancer (p = 0.0017) and is elevated as a result of prostate cancer and chronic lymphocytic leukaemia progression (p < 0.05). Surface expression of paucimannosidic epitopes is demonstrated on human glioblastoma cells using immunofluorescence while biosynthetic involvement of N-acetyl-ß-hexosaminidase is indicated by quantitative proteomics. This intriguing association between protein paucimannosylation and human cancers warrants further exploration to detail the biosynthesis, cellular location(s), protein carriers, and functions of paucimannosylation in tumorigenesis and metastasis.


Asunto(s)
Manosa/metabolismo , Neoplasias/metabolismo , Línea Celular Tumoral , Cromatografía Liquida , Progresión de la Enfermedad , Glicosilación , Humanos , Espectrometría de Masas en Tándem
6.
Anal Chem ; 91(14): 9078-9085, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31179689

RESUMEN

Glycan head-groups attached to glycosphingolipids (GSLs) found in the cell membrane bilayer can alter in response to external stimuli and disease, making them potential markers and/or targets for cellular disease states. To identify such markers, comprehensive analyses of glycan structures must be undertaken. Conventional analyses of fluorescently labeled glycans using hydrophilic interaction high-performance liquid chromatography (HILIC) coupled with mass spectrometry (MS) provides relative quantitation and has the ability to perform automated glycan assignments using glucose unit (GU) and mass matching. The use of ion mobility (IM) as an additional level of separation can aid the characterization of closely related or isomeric structures through the generation of glycan collision cross section (CCS) identifiers. Here, we present a workflow for the analysis of procainamide-labeled GSL glycans using HILIC-IM-MS and a new, automated glycan identification strategy whereby multiple glycan attributes are combined to increase accuracy in automated structural assignments. For glycan matching and identification, an experimental reference database of GSL glycans containing GU, mass, and CCS values for each glycan was created. To assess the accuracy of glycan assignments, a distance-based confidence metric was used. The assignment accuracy was significantly better compared to conventional HILIC-MS approaches (using mass and GU only). This workflow was applied to the study of two Triple Negative Breast Cancer (TNBC) cell lines and revealed potential GSL glycosylation signatures characteristic of different TNBC subtypes.


Asunto(s)
Glicoesfingolípidos/química , Polisacáridos/análisis , Proteínas Bacterianas/química , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Glicósido Hidrolasas/química , Humanos , Espectrometría de Masas/métodos , Rhodococcus/enzimología , Neoplasias de la Mama Triple Negativas/clasificación
8.
Glycoconj J ; 30(5): 523-36, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23053637

RESUMEN

As one of several biologically active compounds in milk, glycoproteins have been indicated to be involved in the protection of newborns from bacterial infection. As much of the physical and immune development of the tammar wallaby (Macropus eugenii) young occurs during the early phases of lactation and not in utero, the tammar is a model species for the characterization of potential developmental support agents provided by maternal milk.In the present study, the N- and O-linked glycans from tammar wallaby milk glycoproteins from six individuals at different lactation time points were subjected to glycomics analyses using porous graphitized carbon liquid chromatography electrospray ionization mass spectrometry. Structural characterization identified a diverse range of glycan structures on wallaby milk glycoproteins including sialylated, sulphated, core fucosylated and O-fucosylated structures. 30 % of N-linked structures contained a core (α1-6) fucose. Several of these structures may play roles in development, and exhibit statistically significant temporal changes over the lactation period. The N-glycome was found to contain structures with NeuGc residues, while in contrast the O-glycome did not. O-fucosylated structures were identified in the early stages of lactation indicating a potential role in the early stages of development of the pouch young. Overall the results suggest that wallaby milk contains structures known to have developmental and immunological significance in human milk and reproduction in other animals, highlighting the importance of glycoproteins in milk.


Asunto(s)
Glicómica , Proteínas de la Leche/aislamiento & purificación , Leche/química , Polisacáridos/aislamiento & purificación , Animales , Animales Recién Nacidos , Secuencia de Carbohidratos , Cromatografía Liquida , Femenino , Glicosilación , Humanos , Recién Nacido , Lactancia/inmunología , Macropodidae , Leche/inmunología , Proteínas de la Leche/química , Datos de Secuencia Molecular , Polisacáridos/química , Espectrometría de Masa por Ionización de Electrospray
9.
Methods Mol Biol ; 2370: 3-23, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34611862

RESUMEN

Glycosylation is important in biology, contributing to both protein conformation and function. Structurally, glycosylation is complex and diverse. This complexity is reflected in the topology, composition, monosaccharide linkages, and isomerism of each oligosaccharide. Glycoanalytics is a discipline that addresses the understanding and characterization of this complexity and its correlation with biology. It includes analytical steps such as sample preparation, instrument measurements, and data analyses. Of these, data analysis has emerged as a critical bottleneck because data collection has increasingly become high-throughput. This has resulted in data-rich workflows that lack rapid and automated data analytics. To address this issue, the field has been developing software for interpretation of quantitative glycomics studies. Here, we describe a protocol using available informatics tools for analysis of data from analysis of released glycans using high-/ultraperformance liquid chromatography (H/UPLC) coupled with mass spectrometry (MS).


Asunto(s)
Glicómica , Cromatografía Líquida de Alta Presión , Glicosilación , Espectrometría de Masas , Polisacáridos
10.
PLoS Negl Trop Dis ; 15(2): e0009071, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529215

RESUMEN

African sleeping sickness is caused by Trypanosoma brucei, a parasite transmitted by the bite of a tsetse fly. Trypanosome infection induces a severe transcriptional downregulation of tsetse genes encoding for salivary proteins, which reduces its anti-hemostatic and anti-clotting properties. To better understand trypanosome transmission and the possible role of glycans in insect bloodfeeding, we characterized the N-glycome of tsetse saliva glycoproteins. Tsetse salivary N-glycans were enzymatically released, tagged with either 2-aminobenzamide (2-AB) or procainamide, and analyzed by HILIC-UHPLC-FLR coupled online with positive-ion ESI-LC-MS/MS. We found that the N-glycan profiles of T. brucei-infected and naïve tsetse salivary glycoproteins are almost identical, consisting mainly (>50%) of highly processed Man3GlcNAc2 in addition to several other paucimannose, high mannose, and few hybrid-type N-glycans. In overlay assays, these sugars were differentially recognized by the mannose receptor and DC-SIGN C-type lectins. We also show that salivary glycoproteins bind strongly to the surface of transmissible metacyclic trypanosomes. We suggest that although the repertoire of tsetse salivary N-glycans does not change during a trypanosome infection, the interactions with mannosylated glycoproteins may influence parasite transmission into the vertebrate host.


Asunto(s)
Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Polisacáridos/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Trypanosoma/metabolismo , Moscas Tse-Tse/parasitología , Animales , Cromatografía Liquida , Concanavalina A , Glicósido Hidrolasas , Insectos Vectores/parasitología , Saliva , Glándulas Salivales/parasitología , Espectrometría de Masas en Tándem , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/parasitología
11.
Sci Rep ; 10(1): 12903, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737362

RESUMEN

During Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, but also modulate the host's immune responses. Sand fly salivary proteins have been extensively studied, but the nature and biological roles of protein-linked glycans remain overlooked. Here, we characterised the profile of N-glycans from the salivary glycoproteins of Lutzomyia longipalpis, vector of visceral leishmaniasis in the Americas. In silico predictions suggest half of Lu. longipalpis salivary proteins may be N-glycosylated. SDS-PAGE coupled to LC-MS analysis of sand fly saliva, before and after enzymatic deglycosylation, revealed several candidate glycoproteins. To determine the diversity of N-glycan structures in sand fly saliva, enzymatically released sugars were fluorescently tagged and analysed by HPLC, combined with highly sensitive LC-MS/MS, MALDI-TOF-MS, and exoglycosidase treatments. We found that the N-glycan composition of Lu. longipalpis saliva mostly consists of oligomannose sugars, with Man5GlcNAc2 being the most abundant, and a few hybrid-type species. Interestingly, some glycans appear modified with a group of 144 Da, whose identity has yet to be confirmed. Our work presents the first detailed structural analysis of sand fly salivary glycans.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas de Insectos/metabolismo , Insectos Vectores/metabolismo , Leishmaniasis Visceral , Psychodidae/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA