Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 322(2): H167-H180, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890280

RESUMEN

Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.


Asunto(s)
Cistamina/farmacología , Dieta Occidental/efectos adversos , Inhibidores Enzimáticos/farmacología , Proteína Glutamina Gamma Glutamiltransferasa 2/antagonistas & inhibidores , Rigidez Vascular/efectos de los fármacos , Actinas/metabolismo , Animales , Aorta/metabolismo , Aorta/fisiología , Células Cultivadas , Colágeno/metabolismo , Elasticidad , Femenino , Humanos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Análisis de la Onda del Pulso
2.
Am J Physiol Heart Circ Physiol ; 321(2): H435-H445, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34242094

RESUMEN

Arterial stiffening, a characteristic feature of obesity and type 2 diabetes, contributes to the development and progression of cardiovascular diseases (CVD). Currently, no effective prophylaxis or therapeutics is available to prevent or treat arterial stiffening. A better understanding of the molecular mechanisms underlying arterial stiffening is vital to identify newer targets and strategies to reduce CVD burden. A major contributor to arterial stiffening is increased collagen deposition. In the 5'-untranslated regions of mRNAs encoding for type I collagen, an evolutionally conserved stem-loop (SL) structure plays an essential role in its stability and post-transcriptional regulation. Here, we show that feeding a high-fat/high-sucrose (HFHS) diet for 28 wk increases adiposity, insulin resistance, and blood pressure in male wild-type littermates. Moreover, arterial stiffness, assessed in vivo via aortic pulse wave velocity, and ex vivo using atomic force microscopy in aortic explants or pressure myography in isolated femoral and mesenteric arteries, was also increased in those mice. Notably, all these indices of arterial stiffness, along with collagen type I levels in the vasculature, were reduced in HFHS-fed mice harboring a mutation in the 5'SL structure, relative to wild-type littermates. This protective vascular phenotype in 5'SL-mutant mice did not associate with a reduction in insulin resistance or blood pressure. These findings implicate the 5'SL structure as a putative therapeutic target to prevent or reverse arterial stiffening and CVD associated with obesity and type 2 diabetes.NEW & NOTEWORTHY In the 5'-untranslated (UTR) regions of mRNAs encoding for type I collagen, an evolutionally conserved SL structure plays an essential role in its stability and posttranscriptional regulation. We demonstrate that a mutation of the SL mRNA structure in the 5'-UTR decreases collagen type I deposition and arterial stiffness in obese mice. Targeting this evolutionarily conserved SL structure may hold promise in the management of arterial stiffening and CVD associated with obesity and type 2 diabetes.


Asunto(s)
Aorta/fisiopatología , Enfermedades Cardiovasculares/genética , Colágeno Tipo I/genética , Secuencias Invertidas Repetidas/genética , Obesidad/fisiopatología , ARN Mensajero/genética , Rigidez Vascular/genética , Regiones no Traducidas 5'/genética , Adiposidad , Animales , Enfermedades Cardiovasculares/fisiopatología , Cadena alfa 1 del Colágeno Tipo I , Dieta Alta en Grasa , Sacarosa en la Dieta , Arteria Femoral/fisiopatología , Resistencia a la Insulina , Masculino , Arterias Mesentéricas/fisiopatología , Ratones , Microscopía de Fuerza Atómica , Mutación , Análisis de la Onda del Pulso
3.
Am J Physiol Endocrinol Metab ; 316(2): E156-E167, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30512987

RESUMEN

The role of estrogen receptor-α (ERα) signaling in immunometabolic function is established in females. However, its necessity in males, while appreciated, requires further study. Accordingly, we first determined whether lower metabolic function in male mice compared with females is related to reduced ERα expression. ERα protein expression in metabolically active tissues was lower in males than in females, and this lower expression was associated with worse glucose tolerance. Second, we determined whether ERα is required for optimal immunometabolic function in male mice consuming a chow diet. Despite lower expression of ERα in males, its genetic ablation (KO) caused an insulin-resistant phenotype characterized by enhanced adiposity, glucose intolerance, hepatic steatosis, and metaflammation in adipose tissue and liver. Last, we determined whether ERα is essential for exercise-induced metabolic adaptations. Twelve-week-old wild-type (WT) and ERα KO mice either remained sedentary (SED) or were given access to running wheels (WR) for 10 wk while fed an obesogenic diet. Body weight and fat mass were lower in WR mice regardless of genotype. Daily exercise obliterated immune cell infiltration and inflammatory gene transcripts in adipose tissue in both genotypes. In the liver, however, wheel running suppressed hepatic steatosis and inflammatory gene transcripts in WT but not in KO mice. In conclusion, the present findings indicate that ERα is required for optimal immunometabolic function in male mice despite their reduced ERα protein expression in metabolically active tissues. Furthermore, for the first time, we show that ERα signaling appears to be obligatory for exercise-induced prevention of hepatic steatosis.


Asunto(s)
Receptor alfa de Estrógeno/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Condicionamiento Físico Animal/fisiología , Tejido Adiposo Blanco/metabolismo , Adiposidad/genética , Animales , Receptor alfa de Estrógeno/metabolismo , Femenino , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Inflamación/genética , Inflamación/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo
4.
Am J Physiol Endocrinol Metab ; 317(3): E548-E558, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31310581

RESUMEN

Endothelin-1 (ET-1) is a potent vasoconstrictor and proinflammatory peptide that is upregulated in obesity. Herein, we tested the hypothesis that ET-1 signaling promotes visceral adipose tissue (AT) inflammation and disrupts glucose homeostasis. We also tested if reduced ET-1 is a required mechanism by which exercise ameliorates AT inflammation and improves glycemic control in obesity. We found that 1) diet-induced obesity, AT inflammation, and glycemic dysregulation were not accompanied by significantly increased levels of ET-1 in AT or circulation in wild-type mice and that endothelial overexpression of ET-1 and consequently increased ET-1 levels did not cause AT inflammation yet impaired glucose tolerance; 2) reduced AT inflammation and improved glucose tolerance with voluntary wheel running was not associated with decreased levels of ET-1 in AT or circulation in obese mice nor did endothelial overexpression of ET-1 impede such exercise-induced metabolic adaptations; 3) chronic pharmacological blockade of ET-1 receptors did not suppress AT inflammation in obese mice but improved glucose tolerance; and 4) in a cohort of human subjects with a wide range of body mass indexes, ET-1 levels in AT, or circulation were not correlated with markers of inflammation in AT. In aggregate, we conclude that ET-1 signaling is not implicated in the development of visceral AT inflammation but promotes glucose intolerance, thus representing an important therapeutic target for glycemic dysregulation in conditions characterized by hyperendothelinemia. Furthermore, we show that the salutary effects of exercise on AT and systemic metabolic function are not contingent on the suppression of ET-1 signaling.


Asunto(s)
Endotelina-1/metabolismo , Intolerancia a la Glucosa/metabolismo , Inflamación/patología , Grasa Intraabdominal/patología , Condicionamiento Físico Animal/fisiología , Animales , Índice de Masa Corporal , Endotelina-1/antagonistas & inhibidores , Endotelina-1/genética , Ejercicio Físico/fisiología , Femenino , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/patología , Carrera
5.
Am J Physiol Regul Integr Comp Physiol ; 314(4): R584-R597, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351429

RESUMEN

Brown adipose tissue (BAT) is considered protective against obesity and related cardiometabolic dysfunction. Indeed, activation of BAT improves glucose homeostasis and attenuates cardiovascular disease development. However, whether a reduction in BAT mass perturbs metabolic function and increases risk for cardiovascular disease remains largely unknown. To address this question, C57BL/6J male mice underwent a sham procedure or surgical bilateral excision of interscapular BAT (iBATx) and were fed a normal chow or a Western diet for 18 wk, creating four groups ( n = 10/group). Mice were housed at 25°C. As expected, the Western diet increased final body weight and adiposity; however, contrary to our hypothesis, iBATx did not potentiate adiposity independent of diet. Furthermore, iBATx did not affect indexes of glycemic control (HbA1c, fasting glucose and insulin, and glucose area under the curve during a glucose tolerance test) and produced minimal-to-no effects on lipid homeostasis. The absence of metabolic disturbances with iBATx was not attributed to regrowth of iBAT or a "browning" or proliferative compensatory response of other BAT depots. Notably, iBATx caused an increase in aortic stiffness in normal chow-fed mice only, which was associated with an increase in aortic uncoupling protein-1. Collectively, we demonstrated that, at 25°C (i.e., limited thermal stress conditions), a substantial reduction in BAT mass via iBATx does not disrupt systemic glucose metabolism, challenging the current dogma that preservation of BAT is obligatory for optimal metabolic function. However, iBATx caused aortic stiffening in lean mice, hence supporting the existence of an interplay between iBAT and aortic stiffness, independent of alterations in glucose homeostasis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/fisiopatología , Glucemia/metabolismo , Metabolismo Energético , Rigidez Vascular , Tejido Adiposo Pardo/cirugía , Adiposidad , Animales , Enfermedades de la Aorta/sangre , Enfermedades de la Aorta/etiología , Dieta Occidental , Modelos Animales de Enfermedad , Hemoglobina Glucada/metabolismo , Humanos , Insulina/sangre , Lipectomía , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/etiología , Obesidad/fisiopatología , Escápula
6.
Am J Physiol Endocrinol Metab ; 313(4): E402-E412, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28655717

RESUMEN

Females are typically more insulin sensitive than males, which may be partly attributed to greater brown adipose tissue (BAT) activity and uncoupling protein 1 (UCP1) content. Accordingly, we tested the hypothesis that UCP1 deletion would abolish sex differences in insulin sensitivity and that whitening of thoracic periaortic BAT caused by UCP1 loss would be accompanied with impaired thoracic aortic function. Furthermore, because UCP1 exerts antioxidant effects, we examined whether UCP1 deficiency-induced metabolic dysfunction was mediated by oxidative stress. Compared with males, female mice had lower HOMA- and AT-insulin resistance (IR) despite no significant differences in BAT UCP1 content. UCP1 ablation increased HOMA-IR, AT-IR, and whitening of BAT in both sexes. Expression of UCP1 in thoracic aorta was greater in wild-type females compared with males. Importantly, deletion of UCP1 enhanced aortic vasomotor function in females only. UCP1 ablation did not promote oxidative stress in interscapular BAT. Furthermore, daily administration of the free radical scavenger tempol for 8 wk did not abrogate UCP1 deficiency-induced increases in adiposity, hyperinsulinemia, or liver steatosis. Collectively, we report that 1) in normal chow-fed mice housed at 25°C, aortic UCP1 content was greater in females than males and its deletion improved ex vivo aortic vasomotor function in females only; 2) constitutive UCP1 content in BAT was similar between females and males and loss of UCP1 did not abolish sex differences in insulin sensitivity; and 3) the metabolic disruptions caused by UCP1 ablation did not appear to be contingent upon increased oxidative stress in mice under normal dietary conditions.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Aorta/metabolismo , Resistencia a la Insulina/genética , Estrés Oxidativo/genética , Proteína Desacopladora 1/genética , Sistema Vasomotor/metabolismo , Adiposidad/genética , Animales , Aorta/fisiopatología , Hígado Graso/genética , Hígado Graso/metabolismo , Femenino , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Factores Sexuales , Sistema Vasomotor/fisiopatología
7.
Am J Physiol Regul Integr Comp Physiol ; 312(1): R74-R84, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881400

RESUMEN

We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced "whitening" of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1-/-) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1-/- exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress (P < 0.05), and decreased mitochondrial subunit protein (COX I, II, III, and IV, P < 0.05), all of which were exacerbated by Western diet (P < 0.05). UCP1-/- mice also developed liver steatosis and glucose intolerance, which was worsened by Western diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1-/- were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis.


Asunto(s)
Dieta Occidental/efectos adversos , Hígado Graso/etiología , Hígado Graso/fisiopatología , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/fisiopatología , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Pardo/fisiopatología , Animales , Peso Corporal , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/fisiopatología , Proteína Desacopladora 1/genética
8.
Am J Physiol Regul Integr Comp Physiol ; 310(8): R744-51, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26864812

RESUMEN

Adipose tissue (AT) inflammation is a hallmark characteristic of obesity and an important determinant of insulin resistance and cardiovascular disease; therefore, a better understanding of factors regulating AT inflammation is critical. It is well established that reduced vascular endothelial nitric oxide (NO) bioavailability promotes arterial inflammation; however, the role of NO in modulating inflammation in AT remains disputed. In the present study, 10-wk-old C57BL6 wild-type and endothelial nitric oxide synthase (eNOS) knockout male mice were randomized to either a control diet (10% kcal from fat) or a Western diet (44.9% kcal from fat, 17% sucrose, and 1% cholesterol) for 18 wk (n= 7 or 8/group). In wild-type mice, Western diet-induced obesity led to increased visceral white AT expression of inflammatory genes (e.g., MCP1, TNF-α, and CCL5 mRNAs) and markers of macrophage infiltration (e.g., CD68, ITGAM, EMR1, CD11C mRNAs, and Mac-2 protein), as well as reduced markers of mitochondrial content (e.g., OXPHOS complex I and IV protein). Unexpectedly, these effects of Western diet on visceral white AT were not accompanied by decreases in eNOS phosphorylation at Ser-1177 or increases in eNOS phosphorylation at Thr-495. Also counter to expectations, eNOS knockout mice, independent of the diet, were leaner and did not exhibit greater white or brown AT inflammation compared with wild-type mice. Collectively, these findings do not support the hypothesis that reduced NO production from eNOS contributes to obesity-related AT inflammation.


Asunto(s)
Grasa Intraabdominal/enzimología , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico/metabolismo , Obesidad/enzimología , Paniculitis/enzimología , Tejido Adiposo Pardo/enzimología , Adiposidad , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Mediadores de Inflamación/metabolismo , Resistencia a la Insulina , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Obesidad/genética , Obesidad/fisiopatología , Paniculitis/genética , Paniculitis/fisiopatología , Fenotipo , Fosforilación , Serina , Transducción de Señal , Treonina
9.
Front Physiol ; 12: 588358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854438

RESUMEN

Enhanced mineralocorticoid receptor (MR) signaling is critical to the development of endothelial dysfunction and arterial stiffening. However, there is a lack of knowledge about the role of MR-induced adipose tissue inflammation in the genesis of vascular dysfunction in women. In this study, we hypothesize that MR activation in myeloid cells contributes to angiotensin II (Ang II)-induced aortic stiffening and endothelial dysfunction in females via increased pro-inflammatory (M1) macrophage polarization. Female mice lacking MR in myeloid cells (MyMRKO) were infused with Ang II (500 ng/kg/min) for 4 weeks. This was followed by determinations of aortic stiffness and vasomotor responses, as well as measurements of markers of inflammation and macrophage infiltration/polarization in different adipose tissue compartments. MyMRKO mice were protected against Ang II-induced aortic endothelial stiffening, as assessed via atomic force microscopy in aortic explants, and vasorelaxation dysfunction, as measured by aortic wire myography. In alignment, MyMRKO mice were protected against Ang II-induced macrophage infiltration and M1 polarization in visceral adipose tissue (VAT) and thoracic perivascular adipose tissue (tPVAT). Collectively, this study demonstrates a critical role of MR activation in myeloid cells in the pathogenesis of vascular dysfunction in females associated with pro-inflammatory macrophage polarization in VAT and tPVAT. Our data have potential clinical implications for the prevention and management of cardiovascular disease in women, who are disproportionally at higher risk for poor outcomes.

10.
Hypertension ; 76(4): 1319-1329, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32829657

RESUMEN

Insulin resistance in the vasculature is a characteristic feature of obesity and contributes to the pathogenesis of vascular dysfunction and disease. However, the molecular mechanisms underlying obesity-associated vascular insulin resistance and dysfunction remain poorly understood. We hypothesized that TRAF3IP2 (TRAF3 interacting protein 2), a proinflammatory adaptor molecule known to activate pathological stress pathways and implicated in cardiovascular diseases, plays a causal role in obesity-associated vascular insulin resistance and dysfunction. We tested this hypothesis by employing genetic-manipulation in endothelial cells in vitro, in isolated arteries ex vivo, and diet-induced obesity in a mouse model of TRAF3IP2 ablation in vivo. We show that ectopic expression of TRAF3IP2 blunts insulin signaling in endothelial cells and diminishes endothelium-dependent vasorelaxation in isolated aortic rings. Further, 16 weeks of high fat/high sucrose feeding impaired glucose tolerance, aortic insulin-induced vasorelaxation, and hindlimb postocclusive reactive hyperemia, while increasing blood pressure and arterial stiffness in wild-type male mice. Notably, TRAF3IP2 ablation protected mice from such high fat/high sucrose feeding-induced metabolic and vascular defects. Interestingly, wild-type female mice expressed markedly reduced levels of TRAF3IP2 mRNA independent of diet and were protected against high fat/high sucrose diet-induced vascular dysfunction. These data indicate that TRAF3IP2 plays a causal role in vascular insulin resistance and dysfunction. Specifically, the present findings highlight a sexual dimorphic role of TRAF3IP2 in vascular control and identify it as a promising therapeutic target in vasculometabolic derangements associated with obesity, particularly in males.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endotelio Vascular/metabolismo , Resistencia a la Insulina/genética , Insulina/metabolismo , Obesidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Aorta/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Humanos , Masculino , Ratones , Obesidad/genética , Transducción de Señal/fisiología , Vasodilatación/fisiología
11.
J Appl Physiol (1985) ; 129(2): 283-296, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32614687

RESUMEN

We aimed to examine whether individuals with type 2 diabetes (T2D) exhibit suppressed leg vascular conductance and skeletal muscle capillary perfusion in response to a hyperinsulinemic-euglycemic clamp and to test whether these two variables are positively correlated. Subsequently, we examined whether T2D-associated skeletal muscle microvascular insulin resistance, as well as overall vascular dysfunction, would be ameliorated by an 8-wk walking intervention (45 min at 60% of heart rate reserve, 5 sessions/week). We report that, relative to healthy subjects, overweight and obese individuals with T2D exhibit depressed insulin-stimulated increases in leg vascular conductance, skeletal muscle capillary perfusion, and Akt phosphorylation. Notably, we found that within individuals with T2D, those with lesser increases in leg vascular conductance in response to insulin exhibited the lowest increases in muscle capillary perfusion, suggesting that limited muscle capillary perfusion may be, in part, linked to the impaired ability of the upstream resistance vessels to dilate in response to insulin. Furthermore, we show that the 8-wk walking intervention, which did not evoke weight loss, was insufficient to ameliorate skeletal muscle microvascular insulin resistance in previously sedentary, overweight/obese subjects with T2D, despite high adherence and tolerance. However, the walking intervention did improve (P < 0.05) popliteal artery flow-mediated dilation (+4.52%) and reduced HbA1c (-0.75%). It is possible that physical activity interventions that are longer in duration, engage large muscle groups with recruitment of the maximum number of muscle fibers, and lead to a robust reduction in metabolic risk factors may be required to overhaul microvascular insulin resistance in T2D.NEW & NOTEWORTHY This report provides evidence that in sedentary subjects with type 2 diabetes diminished insulin-stimulated increases in leg vascular conductance and ensuing blunted capillary perfusion in skeletal muscle are not restorable by increased walking alone. More innovative physical activity interventions that ultimately result in a robust mitigation of metabolic risk factors may be vital for reestablishing skeletal muscle microvascular insulin sensitivity in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Insulina , Músculo Esquelético , Caminata
12.
Front Physiol ; 10: 9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804793

RESUMEN

Metabolic disease risk escalates following menopause. The mechanism is not fully known, but likely involves reduced signaling through estrogen receptor alpha (ERα), which is highly expressed in brown and white adipose tissue (BAT and WAT). Objective: Test the hypothesis that uncoupling protein (UCP1) activation mitigates metabolic dysfunction caused by loss of signaling through ERα. Methods: At 8 weeks of age, female ERα knock out (KO) and wild-type mice were housed at 28°C and fed a Western-style high-fat, high sucrose diet (HFD) or a normal low-fat chow diet (NC) for 10 weeks. During the final 2 weeks, they received daily injections of CL 316,256 (CL), a selective ß3 adrenergic agonist, or vehicle control (CTRL), creating eight groups: WT-CTRL, WT-CL, KO-CTRL, and KO-CL on HFD or NC; n = 4-10/group. Results: ERαKO demonstrated exacerbated HFD-induced adiposity gain (P < 0.001) and insulin resistance (P = 0.006). CL treatment improved insulin sensitivity (P < 0.05) and normalized ERαKO-induced adiposity increase (P < 0.05). In both genotypes, CL increased resting energy expenditure (P < 0.05) and induced WAT beiging indicated by increased UCP1 protein in both perigonadal (PGAT) and subcutaneous (SQAT) depots. These effects were attenuated under HFD conditions (P < 0.05). In KO, CL reduced HFD energy consumption compared to CTRL (P < 0.05). Remarkably, CL increased WAT ERß protein levels of both WT and KO (P < 0.001), revealing CL-mediated changes in estrogen signaling may have protective metabolic effects. Conclusion: CL completely restored metabolic dysfunction in ERαKO mice. Thus, UCP1 may be a therapeutic target for treating metabolic dysfunction following loss of estrogen receptor signaling.

13.
Diabetes ; 68(9): 1717-1729, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30862679

RESUMEN

The prevailing dogma is that thermogenic brown adipose tissue (BAT) contributes to improvements in glucose homeostasis in obesogenic animal models, though much of the evidence supporting this premise is from thermostressed rodents. Determination of whether modulation of the BAT morphology/function drives changes in glucoregulation at thermoneutrality requires further investigation. We used loss- and gain-of-function approaches including genetic manipulation of the lipolytic enzyme Pnpla2, change in environmental temperature, and lifestyle interventions to comprehensively test the premise that a thermogenic-like BAT phenotype is coupled with enhanced glucose tolerance in female mice. In contrast to this hypothesis, we found that 1) compared to mice living at thermoneutrality, enhanced activation of BAT and its thermogenic phenotype via chronic mild cold stress does not improve glucose tolerance in obese mice, 2) silencing of the Pnpla2 in interscapular BAT causes a brown-to-white phenotypic shift accompanied with inflammation but does not disrupt glucose tolerance in lean mice, and 3) exercise and low-fat diet improve glucose tolerance in obese mice but these effects do not track with a thermogenic BAT phenotype. Collectively, these findings indicate that a thermogenic-like BAT phenotype is not linked to heightened glucose tolerance in female mice.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Respuesta al Choque por Frío/fisiología , Obesidad/metabolismo , Termogénesis/fisiología , Animales , Frío , Dieta Alta en Grasa , Metabolismo Energético/fisiología , Femenino , Prueba de Tolerancia a la Glucosa , Lipasa/genética , Lipasa/metabolismo , Ratones , Ratones Noqueados , Fenotipo
14.
Hypertension ; 74(6): 1409-1419, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31630572

RESUMEN

Endothelin-1 (ET-1) is a powerful vasoconstrictor peptide considered to be causally implicated in hypertension and the development of cardiovascular disease. Increased ET-1 is commonly associated with reduced NO bioavailability and impaired vascular function; however, whether chronic elevation of ET-1 directly impairs endothelium-dependent relaxation (EDR) remains elusive. Herein, we report that (1) prolonged ET-1 exposure (ie, 48 hours) of naive mouse aortas or cultured endothelial cells did not impair EDR or reduce eNOS (endothelial NO synthase) activity, respectively (P>0.05); (2) mice with endothelial cell-specific ET-1 overexpression did not exhibit impaired EDR or reduced eNOS activity (P>0.05); (3) chronic (8 weeks) pharmacological blockade of ET-1 receptors in obese/hyperlipidemic mice did not improve aortic EDR or increase eNOS activity (P>0.05); and (4) vascular and plasma ET-1 did not inversely correlate with EDR in resistance arteries isolated from human subjects with a wide range of ET-1 levels (r=0.0037 and r=-0.1258, respectively). Furthermore, we report that prolonged ET-1 exposure downregulated vascular UCP-1 (uncoupling protein-1; P<0.05), which may contribute to the preservation of EDR in conditions characterized by hyperendothelinemia. Collectively, our findings demonstrate that chronic elevation of ET-1 alone may not be sufficient to impair EDR.


Asunto(s)
Endotelina-1/farmacología , Óxido Nítrico/metabolismo , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Animales , Aorta/fisiopatología , Western Blotting/métodos , Células Endoteliales/efectos de los fármacos , Femenino , Técnicas In Vitro , Espectrometría de Masas/métodos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Sensibilidad y Especificidad
15.
Endocrinology ; 160(12): 2918-2928, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31617909

RESUMEN

Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.


Asunto(s)
Endotelio Vascular/fisiopatología , Canales Epiteliales de Sodio/metabolismo , Obesidad/fisiopatología , Caracteres Sexuales , Rigidez Vascular , Animales , Células Cultivadas , Endotelio Vascular/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo
16.
Adipocyte ; 7(1): 20-34, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29226756

RESUMEN

Loss of ovarian hormones is associated with increased adiposity, white adipose tissue (WAT) inflammation, and insulin resistance (IR). Previous work demonstrated ovariectomized (OVX) rats bred for high aerobic fitness (HCR) are protected against weight gain and IR compared to rats bred for low aerobic fitness (LCR) yet wheel running prevents OVX-induced IR in LCR rats. The purpose of this study was to determine whether adipose tissue immunometabolic characteristics from female HCR and LCR rats differs before or after OVX, and whether wheel running mitigates OVX-induced adipose tissue immunometabolic changes in LCR rats. Female OVX HCR and LCR rats were all fed a high fat diet (HFD) (n = 7-8/group) and randomized to either a running wheel or remain sedentary for 11 weeks. Ovary-intact rats (n = 7-12/group) were fed a standard chow diet with no wheel. Ovary-intact LCR rats had a greater visceral WAT inflammatory profile compared to HCR. Following OVX, sedentary LCR rats had greater serum leptin (p<0.001) and WAT inflammation (p<0.05) than sedentary HCR. Wheel running normalized the elevated serum leptin and reduced both visceral (p<0.05) and subcutaneous (p<0.03) WAT inflammatory markers in the LCR rats. Paradoxically, wheel running increased some markers of WAT inflammation in OVX HCR rats (p<0.05), which correlated with observed weight gain. Taken together, HCR rats appear to have a healthier WAT immune and metabolic profile compared to LCR, even following OVX. Wheel running improves WAT health in previously sedentary LCR rats. On the other hand, increased WAT inflammation is associated with adiposity gain despite a high volume of wheel running in HCR rats.


Asunto(s)
Tejido Adiposo/metabolismo , Condicionamiento Físico Animal , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/fisiología , Femenino , Inflamación , Resistencia a la Insulina/fisiología , Menopausia/metabolismo , Ovariectomía , Ratas
17.
J Endocrinol ; 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089681

RESUMEN

Premenopausal females are protected against adipose tissue inflammation and insulin resistance, until loss of ovarian hormone production (e.g., menopause). There is some evidence that females have greater brown adipose tissue (BAT) thermogenic capacity. Because BAT mass correlates inversely with insulin resistance, we hypothesized that increased uncoupling protein 1 (UCP1) expression contributes to the superior metabolic health of females. Given that UCP1 transiently increases in BAT following ovariectomy (OVX), we hypothesized that UCP1 may 'buffer' OVX-mediated metabolic dysfunction. Accordingly, female UCP1 knock-out (KO) and wild-type (Digby, et al.) mice received OVX or sham (SHM) surgeries at 12 weeks of age creating four groups (n=10/group), which were followed for 14 weeks and compared for: body weight and adiposity, food intake, energy expenditure and spontaneous physical activity (metabolic chambers), insulin resistance (HOMA-IR, ADIPO-IR, and glucose tolerance testing), and adipose tissue phenotype (histology, gene, and protein expression). Two-way ANOVA was used to assess main effects of genotype (G), OVX treatment (O), and genotype by treatment (GxO) interactions, which were considered significant when P<0.05. UCP1KO mice experienced a more adverse metabolic response to OVX than WT. Whereas OVX-induced weight gain was not synergistically greater for KO compared to WT (GxO, NS), OVX-induced insulin resistance was significantly exacerbated in KO compared to WT (GxO for HOMA-IR, P<0.05). These results suggest UCP1 is protective against metabolic dysfunction associated with loss of ovarian hormones and support the need for more research into therapeutics to selectively target UCP1 for prevention and treatment of metabolic dysfunction following ovarian hormone loss.

18.
PLoS One ; 11(9): e0161939, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27583382

RESUMEN

We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis.


Asunto(s)
Tejido Adiposo/patología , Dieta Occidental , Intolerancia a la Glucosa , Inflamación/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA