Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 291(8): 4236-46, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26742839

RESUMEN

Tetherin, also known as bone marrow stromal antigen 2 (BST-2), inhibits the release of a wide range of enveloped viruses, including human immunodeficiency virus, type 1 (HIV-1) by directly tethering nascent virions to the surface of infected cells. The HIV-1 accessary protein Vpu counteracts tetherin restriction via sequestration, down-regulation, and/or displacement mechanisms to remove tetherin from sites of virus budding. However, the exact mechanism of Vpu-mediated antagonism of tetherin restriction remains to be fully understood. Here we report a novel role for the actin cross-linking regulator filamin A (FLNa) in Vpu anti-tetherin activities. We demonstrate that FLNa associates with tetherin and that FLNa modulates tetherin turnover. FLNa deficiency was found to enhance cell surface and steady-state levels of tetherin expression. In contrast, we observed that overexpression of FLNa reduced tetherin expression levels both on the plasma membrane and in intracellular compartments. Although FLNb shows high amino acid sequence similarity with FLNa, we reveal that only FLNa, but not FLNb, plays an essential role in tetherin turnover. We further showed that FLNa deficiency inhibited Vpu-mediated enhancement of virus release through interfering with the activity of Vpu to down-regulate cellular tetherin. Taken together, our studies suggest that Vpu hijacks the FLNa function in the modulation of tetherin to neutralize the antiviral factor tetherin. These findings may provide novel strategies for the treatment of HIV-1 infection.


Asunto(s)
Antígenos CD/biosíntesis , Filaminas/metabolismo , Regulación de la Expresión Génica , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Liberación del Virus/fisiología , Antígenos CD/genética , Filaminas/genética , Proteínas Ligadas a GPI/biosíntesis , Proteínas Ligadas a GPI/genética , Células HEK293 , VIH-1/genética , Células HeLa , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Proteínas Reguladoras y Accesorias Virales/genética
2.
Proc Natl Acad Sci U S A ; 107(7): 3169-74, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133767

RESUMEN

Neuropathology involving TAR DNA binding protein-43 (TDP-43) has been identified in a wide spectrum of neurodegenerative diseases collectively named as TDP-43 proteinopathy, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). To test whether increased expression of wide-type human TDP-43 (hTDP-43) may cause neurotoxicity in vivo, we generated transgenic flies expressing hTDP-43 in various neuronal subpopulations. Expression in the fly eyes of the full-length hTDP-43, but not a mutant lacking its amino-terminal domain, led to progressive loss of ommatidia with remarkable signs of neurodegeneration. Expressing hTDP-43 in mushroom bodies (MBs) resulted in dramatic axon losses and neuronal death. Furthermore, hTDP-43 expression in motor neurons led to axon swelling, reduction in axon branches and bouton numbers, and motor neuron loss together with functional deficits. Thus, our transgenic flies expressing hTDP-43 recapitulate important neuropathological and clinical features of human TDP-43 proteinopathy, providing a powerful animal model for this group of devastating diseases. Our study indicates that simply increasing hTDP-43 expression is sufficient to cause neurotoxicity in vivo, suggesting that aberrant regulation of TDP-43 expression or decreased clearance of hTDP-43 may contribute to the pathogenesis of TDP-43 proteinopathy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Drosophila , Neuronas/metabolismo , Degeneración Retiniana/metabolismo , Proteinopatías TDP-43/metabolismo , Animales , Animales Modificados Genéticamente , Humanos , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Cuerpos Pedunculados/metabolismo , Neuronas/ultraestructura , Degeneración Retiniana/etiología , Proteinopatías TDP-43/complicaciones , Proteína Fluorescente Roja
3.
J Biol Chem ; 286(32): 28498-510, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21705339

RESUMEN

HIV-1 Gag precursor directs virus particle assembly and release. In a search for Gag-interacting proteins that are involved in late stages of the HIV-1 replication cycle, we performed yeast two-hybrid screening against a human cDNA library and identified the non-muscle actin filament cross-linking protein filamin A as a novel Gag binding partner. The 280-kDa filamin A regulates cortical actin network dynamics and participates in the anchoring of membrane proteins to the actin cytoskeleton. Recent studies have shown that filamin A facilitates HIV-1 cell-to-cell transmission by binding to HIV receptors and coreceptors and regulating their clustering on the target cell surface. Here we report a novel role for filamin A in HIV-1 Gag intracellular trafficking. We demonstrate that filamin A interacts with the capsid domain of HIV-1 Gag and that this interaction is involved in particle release in a productive manner. Disruption of this interaction eliminated Gag localization at the plasma membrane and induced Gag accumulation within internal compartments. Moreover, blocking clathrin-dependent endocytic pathways did not relieve the restriction to particle release induced by filamin A depletion. These results suggest that filamin A is involved in the distinct step of the Gag trafficking pathway. The discovery of the Gag-filamin A interaction may provide a new therapeutic target for the treatment of HIV infection.


Asunto(s)
Proteínas Contráctiles/metabolismo , Infecciones por VIH/mortalidad , VIH-1/fisiología , Proteínas de Microfilamentos/metabolismo , Ensamble de Virus/fisiología , Clatrina/genética , Clatrina/metabolismo , Proteínas Contráctiles/genética , Endocitosis/genética , Filaminas , Biblioteca de Genes , Infecciones por VIH/genética , Infecciones por VIH/transmisión , VIH-1/patogenicidad , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Transporte de Proteínas/genética , Saccharomyces cerevisiae , Técnicas del Sistema de Dos Híbridos , Ensamble de Virus/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana
4.
J Cell Sci ; 123(Pt 19): 3303-15, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20826458

RESUMEN

A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Terminales Presinápticos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Proteínas de Drosophila/genética , Prueba de Complementación Genética , Pruebas Genéticas , Fototransducción/genética , Morfogénesis/genética , Unión Neuromuscular/fisiología , Células Fotorreceptoras de Invertebrados/patología , Terminales Presinápticos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Retina/crecimiento & desarrollo , Retina/patología , Eliminación de Secuencia/genética , Transmisión Sináptica/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/patología
5.
Peptides ; 29(12): 2276-80, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18848852

RESUMEN

Numerous neurosecretory cells are known to secrete more than one peptide, in both vertebrates and invertebrates. These co-expressed neuropeptides often originate from differential cleavage of a single large precursor, and are then usually sorted in the regulated pathway into different secretory vesicle classes to allow separable release dynamics. Here, we use immuno-gold electron microscopy to show that two very different neuropeptides (the nonapeptide crustacean cardioactive peptide (CCAP) and the 30 kDa heterodimeric bursicon) are co-packaged within the same dense core vesicles in neurosecretory neurons in the abdominal ganglia of Periplaneta americana. We suggest that this co-packaging serves a physiological function in which CCAP accelerates the distribution of bursicon to the epidermis after ecdysis to regulate sclerotization of the newly formed cuticle.


Asunto(s)
Ganglios de Invertebrados/metabolismo , Hormonas de Invertebrados/metabolismo , Neuropéptidos/metabolismo , Periplaneta/metabolismo , Vesículas Secretoras/metabolismo , Animales , Ganglios de Invertebrados/ultraestructura , Larva/metabolismo , Larva/ultraestructura , Microscopía Inmunoelectrónica , Neuronas/metabolismo , Neuronas/ultraestructura , Periplaneta/ultraestructura , Vesículas Secretoras/ultraestructura
6.
Dis Model Mech ; 3(7-8): 471-85, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20442204

RESUMEN

Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity.


Asunto(s)
Secuencia Conservada/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestructura , Fertilidad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Mutación/genética , Red Nerviosa/metabolismo , Unión Neuromuscular/metabolismo , Espermatogénesis , Sinapsis/metabolismo , Testículo/metabolismo , Testículo/ultraestructura
7.
Protein Cell ; 1(3): 267-74, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21203973

RESUMEN

Retinitis pigmentosa is a leading cause of blindness and a progressive retinal disorder, affecting millions of people worldwide. This disease is characterized by photoreceptor degeneration, eventually leading to complete blindness. Autosomal dominant (adRP) has been associated with mutations in at least four ubiquitously expressed genes encoding pre-mRNA splicing factors-Prp3, Prp8, Prp31 and PAP1. Biological function of adRP-associated splicing factor genes and molecular mechanisms by which mutations in these genes cause cell-type specific photoreceptor degeneration in humans remain to be elucidated. To investigate the in vivo function of these adRP-associated splicing factor genes, we examined Drosophila in which expression of fly Prp31 homolog was down-regulated. Sequence analyses show that CG6876 is the likely candidate of Drosophila melanogaster Prp31 homolog (DmPrp31). Predicted peptide sequence for CG6876 shows 57% similarity to the Homo sapiens Prp31 protein (HsPrp31). Reduction of the endogenous Prp31 by RNAi-mediated knockdown specifically in the eye leads to reduction of eye size or complete absence of eyes with remarkable features of photoreceptor degeneration and recapitulates the bimodal expressivity of human Prp31 mutations in adRP patients. Such transgenic DmPrp31RNAi flies provide a useful tool for identifying genetic modifiers or interacting genes for Prp31. Expression of the human Prp31 in these animals leads to a partial rescue of the eye phenotype. Our results indicate that the Drosophila CG6876 is the fly ortholog of mammalian Prp31 gene.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Proteínas del Ojo/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cartilla de ADN/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Anomalías del Ojo/genética , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/genética , Técnicas de Silenciamiento del Gen , Genes de Insecto , Humanos , Datos de Secuencia Molecular , Proteínas Asociadas a Pancreatitis , Interferencia de ARN , Empalme del ARN , Homología de Secuencia de Aminoácido
8.
J Cell Sci ; 122(Pt 1): 114-25, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19066280

RESUMEN

Rolling blackout (RBO) is a Drosophila EFR3 integral membrane lipase. A conditional temperature-sensitive (TS) mutant (rbo(ts)) displays paralysis within minutes following a temperature shift from 25 degrees C to 37 degrees C, an impairment previously attributed solely to blocked synaptic-vesicle exocytosis. However, we found that rbo(ts) displays a strong synergistic interaction with the Syntaxin-1A TS allele syx(3-69), recently shown to be a dominant positive mutant that increases Syntaxin-1A function. At neuromuscular synapses, rbo(ts) showed a strong defect in styryl-FM-dye (FM) endocytosis, and rbo(ts);syx(3-69) double mutants displayed a synergistic, more severe, endocytosis impairment. Similarly, central rbo(ts) synapses in primary brain culture showed severely defective FM endocytosis. Non-neuronal nephrocyte Garland cells showed the same endocytosis defect in tracer-uptake assays. Ultrastructurally, rbo(ts) displayed a specific defect in tracer uptake into endosomes in both neuronal and non-neuronal cells. At the rbo(ts) synapse, there was a total blockade of endosome formation via activity-dependent bulk endocytosis. Clathrin-mediated endocytosis was not affected; indeed, there was a significant increase in direct vesicle formation. Together, these results demonstrate that RBO is required for constitutive and/or bulk endocytosis and/or macropinocytosis in both neuronal and non-neuronal cells, and that, at the synapse, this mechanism is responsive to the rate of Syntaxin-1A-dependent exocytosis.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Drosophila/metabolismo , Endocitosis/fisiología , Proteínas de la Membrana/metabolismo , Neuronas , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/metabolismo , Hidrolasas de Éster Carboxílico/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Proteínas de la Membrana/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Neuronas/citología , Neuronas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA