Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 187(12): 3090-3107.e21, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749423

RESUMEN

Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.


Asunto(s)
Envejecimiento , Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Trombosis , Animales , Células Madre Hematopoyéticas/metabolismo , Plaquetas/metabolismo , Trombosis/patología , Trombosis/metabolismo , Ratones , Humanos , Megacariocitos/metabolismo , Ratones Endogámicos C57BL , Células Progenitoras de Megacariocitos/metabolismo , Masculino
2.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35072209

RESUMEN

Tissue-resident lymphoid cells (TLCs) span the spectrum of innate-to-adaptive immune function. Unlike traditional, circulating lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to further understand murine TLC development and the roles of Flk2 and IL7Rα, two cytokine receptors with known function in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled. Despite high labeling, loss of Flk2 minimally affected the generation of these cells. In contrast, loss of IL7Rα, or combined deletion of Flk2 and IL7Rα, dramatically reduced the number of B1a cells, MZBs, ILC2s and Tregs, both in situ and upon transplantation, indicating an intrinsic and essential role for IL7Rα. Surprisingly, reciprocal transplants of wild-type HSCs showed that an IL7Rα-/- environment selectively impaired reconstitution of TLCs when compared with TLC numbers in situ. Taken together, our data defined Flk2- and IL7Rα-positive TLC differentiation paths, and revealed functional roles of Flk2 and IL7Rα in TLC establishment.


Asunto(s)
Células Madre Hematopoyéticas/inmunología , Linfopoyesis/genética , Receptores de Interleucina-7/genética , Tirosina Quinasa 3 Similar a fms/genética , Inmunidad Adaptativa/genética , Animales , Linfocitos B/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Hematopoyéticas/citología , Inmunidad Innata/genética , Linfocitos/citología , Linfocitos/inmunología , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Linfopoyesis/inmunología , Ratones , Especificidad de Órganos/genética , Linfocitos T Reguladores/inmunología
3.
Stem Cells ; 41(5): 520-539, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36945732

RESUMEN

Epigenetic mechanisms regulate the multilineage differentiation capacity of hematopoietic stem cells (HSCs) into a variety of blood and immune cells. Mapping the chromatin dynamics of functionally defined cell populations will shed mechanistic insight into 2 major, unanswered questions in stem cell biology: how does epigenetic identity contribute to a cell type's lineage potential, and how do cascades of chromatin remodeling dictate ensuing fate decisions? Our recent work revealed evidence of multilineage gene priming in HSCs, where open cis-regulatory elements (CREs) exclusively shared between HSCs and unipotent lineage cells were enriched for DNA binding motifs of known lineage-specific transcription factors. Oligopotent progenitor populations operating between the HSCs and unipotent cells play essential roles in effecting hematopoietic homeostasis. To test the hypothesis that selective HSC-primed lineage-specific CREs remain accessible throughout differentiation, we used ATAC-seq to map the temporal dynamics of chromatin remodeling during progenitor differentiation. We observed epigenetic-driven clustering of oligopotent and unipotent progenitors into distinct erythromyeloid and lymphoid branches, with multipotent HSCs and MPPs associating with the erythromyeloid lineage. We mapped the dynamics of lineage-primed CREs throughout hematopoiesis and identified both unique and shared CREs as potential lineage reinforcement mechanisms at fate branch points. Additionally, quantification of genome-wide peak count and size revealed overall greater chromatin accessibility in HSCs, allowing us to identify HSC-unique peaks as putative regulators of self-renewal and multilineage potential. Finally, CRISPRi-mediated targeting of ATACseq-identified putative CREs in HSCs allowed us to demonstrate the functional role of selective CREs in lineage-specific gene expression. These findings provide insight into the regulation of stem cell multipotency and lineage commitment throughout hematopoiesis and serve as a resource to test functional drivers of hematopoietic lineage fate.


Asunto(s)
Cromatina , Hematopoyesis , Cromatina/genética , Cromatina/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética
4.
J Immunol ; 208(8): 1886-1900, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35365562

RESUMEN

Our respiratory system is vital to protect us from the surrounding nonsterile environment; therefore, it is critical for a state of homeostasis to be maintained through a balance of inflammatory cues. Recent studies have shown that actively transcribed noncoding regions of the genome are emerging as key regulators of biological processes, including inflammation. lincRNA-Cox2 is one such example of an inflammatory inducible long intergenic noncoding RNA functioning to fine-tune immune gene expression. Using bulk and single-cell RNA sequencing, in addition to FACS, we find that lincRNA-Cox2 is most highly expressed in the lung and is most upregulated after LPS-induced lung injury (acute lung injury [ALI]) within alveolar macrophages, where it functions to regulate inflammation. We previously reported that lincRNA-Cox2 functions to regulate its neighboring protein Ptgs2 in cis, and in this study, we use genetic mouse models to confirm its role in regulating gene expression more broadly in trans during ALI. Il6, Ccl3, and Ccl5 are dysregulated in the lincRNA-Cox2-deficient mice and can be rescued to wild type levels by crossing the deficient mice with our newly generated lincRNA-Cox2 transgenic mice, confirming that this gene functions in trans. Many genes are specifically regulated by lincRNA-Cox2 within alveolar macrophages originating from the bone marrow because the phenotype can be reversed by transplantation of wild type bone marrow into the lincRNA-Cox2-deficient mice. In conclusion, we show that lincRNA-Cox2 is a trans-acting long noncoding RNA that functions to regulate immune responses and maintain homeostasis within the lung at baseline and on LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ciclooxigenasa 2 , Inflamación , Macrófagos Alveolares , ARN Largo no Codificante , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos Alveolares/metabolismo , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
5.
Infect Immun ; 91(1): e0032222, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36533917

RESUMEN

Helicobacter pylori colonizes half of the world's population and is responsible for a significant disease burden by causing gastritis, peptic ulcers, and gastric cancer. The development of host inflammation drives these diseases, but there are still open questions in the field about how H. pylori controls this process. We characterized H. pylori inflammation using an 8-month mouse infection time course and comparison of the wild type (WT) and a previously identified mutant lacking the TlpA chemoreceptor that causes elevated inflammation. Our work shows that H. pylori chronic-stage corpus inflammation undergoes surprising fluctuations, with changes in Th17 and eosinophil numbers. The H. pylori tlpA mutant changed the inflammation temporal characteristics, resulting in different inflammation from the wild type at some time points. tlpA mutants have equivalent total and gland colonization in late-stage infections. During early infection, in contrast, they show elevated gland and total colonization compared to those by WT. Our results suggest the chronic inflammation setting is dynamic and may be influenced by colonization properties of early infection.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Animales , Ratones , Helicobacter pylori/genética , Quimiotaxis , Proteínas Bacterianas/genética , Inflamación , Mucosa Gástrica
6.
Development ; 146(14)2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332039

RESUMEN

The discovery of a fetal origin for tissue-resident macrophages (trMacs) has inspired an intense search for the mechanisms underlying their development. Here, we performed in vivo lineage tracing of cells with an expression history of IL7Rα, a marker exclusively associated with the lymphoid lineage in adult hematopoiesis. Surprisingly, we found that Il7r-Cre labeled fetal-derived, adult trMacs. Labeling was almost complete in some tissues and partial in others. The putative progenitors of trMacs, yolk sac (YS) erythromyeloid progenitors, did not express IL7R, and YS hematopoiesis was unperturbed in IL7R-deficient mice. In contrast, tracking of IL7Rα message levels, surface expression, and Il7r-Cre-mediated labeling across fetal development revealed dynamic regulation of Il7r mRNA expression and rapid upregulation of IL7Rα surface protein upon transition from monocyte to macrophage within fetal tissues. Fetal monocyte differentiation in vitro produced IL7R+ macrophages, supporting a direct progenitor-progeny relationship. Additionally, blockade of IL7R function during late gestation specifically impaired the establishment of fetal-derived trMacs in vivo These data provide evidence for a distinct function of IL7Rα in fetal myelopoiesis and identify IL7R as a novel regulator of trMac development.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Macrófagos/fisiología , Mielopoyesis/genética , Receptores de Interleucina-7/fisiología , Animales , Embrión de Mamíferos , Femenino , Feto/metabolismo , Hematopoyesis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo
7.
Am J Hematol ; 97(9): 1226-1235, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35560111

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome engineering has emerged as a powerful tool to modify precise genomic sequences with unparalleled accuracy and efficiency. Major advances in CRISPR technologies over the last 5 years have fueled the development of novel techniques in hematopoiesis research to interrogate the complexities of hematopoietic stem cell (HSC) biology. In particular, high throughput CRISPR based screens using various "flavors" of Cas coupled with sequencing and/or functional outputs are becoming increasingly efficient and accessible. In this review, we discuss recent achievements in CRISPR-mediated genomic engineering and how these new tools have advanced the understanding of HSC heterogeneity and function throughout life. Additionally, we highlight how these techniques can be used to answer previously inaccessible questions and the challenges to implement them. Finally, we focus on their translational potential to both model and treat hematological diseases in the clinic.


Asunto(s)
Sistemas CRISPR-Cas , Enfermedades Hematológicas , Bioingeniería , Genómica/métodos , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/terapia , Células Madre Hematopoyéticas , Humanos
8.
J Neurosci ; 34(28): 9455-72, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25009276

RESUMEN

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Sinapsis/fisiología , Sinapsis/ultraestructura , Animales , Células Cultivadas , Corteza Cerebral/citología , Cuerpo Estriado/citología , Proteína Huntingtina , Ratones , Ratones Transgénicos
9.
Heliyon ; 8(11): e11596, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36439758

RESUMEN

Project-based learning (PBL) has long been recognized as an effective way to teach complex biology concepts. However, not all institutions have the resources to facilitate effective project-based coursework for students. We have developed a framework for facilitating PBL using remote-controlled internet-connected microscopes. Through this approach, one lab facility can host an experiment for many students around the world simultaneously. Experiments on this platform can be run on long timescales and with materials that are typically unavailable to high school classrooms. This allows students to perform novel research projects rather than just repeating standard classroom experiments. To investigate the impact of this program, we designed and ran six user studies with students worldwide. All experiments were hosted in Santa Cruz and San Francisco, California, with observations and decisions made remotely by the students using their personal computers and cellphones. In surveys gathered after the experiments, students reported increased excitement for science and a greater desire to pursue a career in STEM. This framework represents a novel, scalable, and effective PBL approach that has the potential to democratize biology and STEM education around the world.

10.
Stem Cell Reports ; 16(6): 1598-1613, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34019813

RESUMEN

Age-related morbidity is associated with a decline in hematopoietic stem cell (HSC) function, but the mechanisms of HSC aging remain unclear. We performed heterochronic HSC transplants followed by quantitative analysis of cell reconstitution. Although young HSCs outperformed old HSCs in young recipients, young HSCs unexpectedly failed to outcompete the old HSCs of aged recipients. Interestingly, despite substantial enrichment of megakaryocyte progenitors (MkPs) in old mice in situ and reported platelet (Plt) priming with age, transplanted old HSCs were deficient in reconstitution of all lineages, including MkPs and Plts. We therefore performed functional analysis of young and old MkPs. Surprisingly, old MkPs displayed unmistakably greater regenerative capacity compared with young MkPs. Transcriptome analysis revealed putative molecular regulators of old MkP expansion. Collectively, these data demonstrated that aging affects HSCs and megakaryopoiesis in fundamentally different ways: whereas old HSCs functionally decline, MkPs gain expansion capacity upon aging.


Asunto(s)
Envejecimiento/fisiología , Células Madre Hematopoyéticas/fisiología , Células Progenitoras de Megacariocitos/fisiología , Trombopoyesis , Transcriptoma , Animales , Linaje de la Célula , Femenino , Trasplante de Células Madre Hematopoyéticas/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Exp Hematol ; 90: 39-45.e3, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32916215

RESUMEN

Respiratory diseases are a leading cause of death worldwide, with vulnerability to disease varying greatly between individuals. The reasons underlying disease susceptibility are unknown, but there is often a variable immune response in lungs often. Recently, we identified a surprising novel role for the interleukin 7 receptor (IL7R), a primarily lymphoid-associated regulator, in fetal-specified, lung-resident macrophage development. Here, we report that traditional, hematopoietic stem cell-derived myeloid cells in the adult lung, peripheral blood, and bone marrow also depend on IL7R expression. Using single- and double-germline knockout models, we found that eosinophil numbers were reduced on deletion of IL7Rα. We then employed two Cre recombinase models in lineage tracing experiments to test whether these cells developed through an IL7Rα+ pathway. Despite the impact of IL7Rα deletion, IL7R-Cre labeled only a minimal fraction of eosinophils. We therefore examined the intrinsic versus extrinsic requirement for IL7R in the production of eosinophils using reciprocal hematopoietic stem cell transplantation assays. These assays revealed that extrinsic, but not eosinophil-intrinsic, IL7R is required for eosinophil reconstitution by HSCs in the adult lung. To determine which external factors may be influencing eosinophil development and survival, we performed a cytokine array analysis between wild-type and IL7Rα-deficient mice and found several differentially regulated proteins. These findings expand on our previous report that IL7R is required not only for proper lymphoid cell development and homeostasis, but also for myeloid cell homeostasis in tissues.


Asunto(s)
Células Madre Hematopoyéticas/inmunología , Homeostasis/inmunología , Pulmón/inmunología , Células Mieloides/inmunología , Receptores de Interleucina-7/inmunología , Transducción de Señal/inmunología , Animales , Femenino , Homeostasis/genética , Pulmón/citología , Linfocitos/citología , Linfocitos/inmunología , Masculino , Ratones , Ratones Noqueados , Células Mieloides/citología , Receptores de Interleucina-7/genética , Transducción de Señal/genética
12.
Cell Rep ; 30(3): 642-657.e6, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968243

RESUMEN

Huntington's disease (HD) is caused by an autosomal dominant polyglutamine expansion mutation of Huntingtin (HTT). HD patients suffer from progressive motor, cognitive, and psychiatric impairments, along with significant degeneration of the striatal projection neurons (SPNs) of the striatum. HD is widely accepted to be caused by a toxic gain-of-function of mutant HTT. However, whether loss of HTT function, because of dominant-negative effects of the mutant protein, plays a role in HD and whether HTT is required for SPN health and function are not known. Here, we delete Htt from specific subpopulations of SPNs using the Cre-Lox system and find that SPNs require HTT for motor regulation, synaptic development, cell health, and survival during aging. Our results suggest that loss of HTT function in SPNs could play a critical role in HD pathogenesis.


Asunto(s)
Cuerpo Estriado/fisiología , Proteína Huntingtina/metabolismo , Red Nerviosa/fisiología , Neuronas/citología , Neuronas/fisiología , Sinapsis/fisiología , Envejecimiento/fisiología , Animales , Conducta Animal/fisiología , Supervivencia Celular , Eliminación de Gen , Globo Pálido/fisiología , Ratones Noqueados , Actividad Motora/fisiología , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA