Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Biol Lett ; 29(1): 84, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822246

RESUMEN

BACKGROUND: Canine mammary tumors (CMTs) in intact female dogs provide a natural model for investigating metastatic human cancers. Our prior research identified elevated expression of Anterior Gradient 2 (AGR2), a protein disulfide isomerase (PDI) primarily found in the endoplasmic reticulum (ER), in CMT tissues, highly associated with CMT progression. We further demonstrated that increased AGR2 expression actively influences the extracellular microenvironment, promoting chemotaxis in CMT cells. Unraveling the underlying mechanisms is crucial for assessing the potential of therapeutically targeting AGR2 as a strategy to inhibit a pro-metastatic microenvironment and impede tumor metastasis. METHODS: To identify the AGR2-modulated secretome, we employed proteomics analysis of the conditioned media (CM) from two CMT cell lines ectopically expressing AGR2, compared with corresponding vector-expressing controls. AGR2-regulated release of 14-3-3ε (gene: YWHAE) and α-actinin 4 (gene: ACTN4) was validated through ectopic expression, knockdown, and knockout of the AGR2 gene in CMT cells. Extracellular vesicles derived from CMT cells were isolated using either differential ultracentrifugation or size exclusion chromatography. The roles of 14-3-3ε and α-actinin 4 in the chemotaxis driven by the AGR2-modulated CM were investigated through gene knockdown, antibody-mediated interference, and recombinant protein supplement. Furthermore, the clinical relevance of the release of 14-3-3ε and α-actinin 4 was assessed using CMT tissue-immersed saline and sera from CMT-afflicted dogs. RESULTS: Proteomics analysis of the AGR2-modulated secretome revealed increased abundance in 14-3-3ε and α-actinin 4. Ectopic expression of AGR2 significantly increased the release of 14-3-3ε and α-actinin 4 in the CM. Conversely, knockdown or knockout of AGR2 expression remarkably reduced their release. Silencing 14-3-3ε or α-actinin 4 expression diminished the chemotaxis driven by AGR2-modulated CM. Furthermore, AGR2 controls the release of 14-3-3ε and α-actinin 4 primarily via non-vesicular routes, responding to the endoplasmic reticulum (ER) stress and autophagy activation. Knockout of AGR2 resulted in increased α-actinin 4 accumulation and impaired 14-3-3ε translocation in autophagosomes. Depletion of extracellular 14-3-3ε or α-actinin 4 reduced the chemotaxis driven by AGR2-modulated CM, whereas supplement with recombinant 14-3-3ε in the CM enhanced the CM-driven chemotaxis. Notably, elevated levels of 14-3-3ε or α-actinin 4 were observed in CMT tissue-immersed saline compared with paired non-tumor samples and in the sera of CMT dogs compared with healthy dogs. CONCLUSION: This study elucidates AGR2's pivotal role in orchestrating unconventional secretion of 14-3-3ε and α-actinin 4 from CMT cells, thereby contributing to paracrine-mediated chemotaxis. The insight into the intricate interplay between AGR2-involved ER stress, autophagy, and unconventional secretion provides a foundation for refining strategies aimed at impeding metastasis in both canine mammary tumors and potentially human cancers.


Asunto(s)
Proteínas 14-3-3 , Actinina , Autofagia , Quimiotaxis , Estrés del Retículo Endoplásmico , Neoplasias Mamarias Animales , Mucoproteínas , Animales , Perros , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Femenino , Actinina/metabolismo , Actinina/genética , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Línea Celular Tumoral , Quimiotaxis/genética , Autofagia/genética , Estrés del Retículo Endoplásmico/genética , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética
2.
Proteomics ; 23(9): e2200321, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36625099

RESUMEN

Globally, oral cavity squamous cell carcinoma (OSCC) is one of the most common fatal illnesses. Its high mortality is ascribed to the fact that the disease is often diagnosed at a late stage, which indicates an urgent need for approaches for the early detection of OSCC. The use of salivary autoantibodies (autoAbs) as OSCC biomarkers has numerous advantages such as easy access to saliva samples and efficient detection of autoAbs using well-established secondary reagents. To improve OSCC screening, we identified OSCC-associated autoAbs with the enrichment of salivary autoAbs combined with affinity mass spectrometry (MS). The salivary IgA of healthy individuals and OSCC patients was purified with peptide M-conjugated beads and then applied to immunoprecipitated antigens (Ags) in OSCC cells. Using tandem MS analysis and spectral counting-based quantitation, the level of 10 Ags increased in the OSCC group compared with the control group. Moreover, salivary levels of autoAbs to the 10 Ags were determined by a multiplexed bead-based immunoassay. Among them, seven were significantly higher in early-stage OSCC patients than in healthy individuals. A marker panel consisting of autoAbs to LMAN2, PTGR1, RAB13, and UQCRC2 was further developed to improve the early diagnosis of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Biomarcadores de Tumor/análisis , Autoanticuerpos/análisis , Inmunoglobulina A/análisis , Saliva/química , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/patología , Espectrometría de Masas en Tándem , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patología , Proteínas de Unión al GTP rab/análisis
3.
Cancer Cell Int ; 23(1): 112, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37309001

RESUMEN

Oral squamous cell carcinoma (OSCC) is the predominant histological type of the head and neck squamous cell carcinoma (HNSCC). By comparing the differentially expressed genes (DEGs) in OSCC-TCGA patients with copy number variations (CNVs) that we identify in OSCC-OncoScan dataset, we herein identified 37 dysregulated candidate genes. Among these potential candidate genes, 26 have been previously reported as dysregulated proteins or genes in HNSCC. Among 11 novel candidates, the overall survival analysis revealed that melanotransferrin (MFI2) is the most significant prognostic molecular in OSCC-TCGA patients. Another independent Taiwanese cohort confirmed that higher MFI2 transcript levels were significantly associated with poor prognosis. Mechanistically, we found that knockdown of MFI2 reduced cell viability, migration and invasion via modulating EGF/FAK signaling in OSCC cells. Collectively, our results support a mechanistic understanding of a novel role for MFI2 in promoting cell invasiveness in OSCC.

4.
J Virol ; 95(20): e0023121, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379499

RESUMEN

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in retinoic acid-inducible gene I (RIG-I) translocation to mitochondrial antiviral-signaling protein (MAVS) to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-ß promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-ß expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C terminus-truncated NS1 with a T49A mutation dramatically increases IFN-ß mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-ß expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in retinoic acid-inducible gene I (RIG-I) translocation that induces type I interferon (IFN) expression, and that NS1 protein prevents RIG-I translocation to the mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-ß suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


Asunto(s)
Proteínas 14-3-3/inmunología , Gripe Humana/inmunología , Interferón beta/metabolismo , Proteínas 14-3-3/metabolismo , Línea Celular Tumoral , Proteína 58 DEAD Box/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/inmunología , Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Interferón beta/fisiología , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , ARN Viral/genética , Receptores Inmunológicos/metabolismo , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
5.
Mol Cell Proteomics ; 19(1): 142-154, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31723016

RESUMEN

We previously reported that tumor inflammasomes play a key role in tumor control and act as favorable prognostic markers in nasopharyngeal carcinoma (NPC). Activated inflammasomes frequently form distinguishable specks and govern the cellular secretion of IL-1ß. However, we know little about the biological and biochemical differences between cells with and without apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) speck formation. In this study, we used proteomic iTRAQ analysis to analyze the proteomes of NPC cells that differ in their ASC speck formation upon cisplatin treatment. We identified proteins that were differentially over-expressed in cells with specks, and found that they fell into two Gene ontology (GO) pathways: mitochondrial oxidative phosphorylation (OxPhos) and ubiquinone metabolism. We observed up-regulation of various components of the OxPhos machinery (including NDUFB3, NDUFB8 and ATP5B), and subsequently found that these changes lead to mitochondrial ROS (mtROS) production, which promotes the formation and activation of NLRP3 inflammasomes and subsequent pyroptosis. In NPC patients, better local recurrence-free survival was significantly associated with high-level expression of NDUFB8 (p = 0.037) and ATP5B (p = 0.029), as examined using immunohistochemistry. However, there were no significant associations between the expression of NDUFB8 and ATP5B with overall survival of NPC patients. Together, our results demonstrate that up-regulated mitochondrial OxPhos components are strongly associated with NLRP3 inflammasome activation in NPC. Our findings further suggest that high-level expression of OxPhos components could be markers for local recurrence and/or promising therapeutic targets in patients with NPC.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Inflamasomas/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Supervivencia sin Enfermedad , Complejo I de Transporte de Electrón/genética , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , ATPasas de Translocación de Protón Mitocondriales/genética , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/mortalidad , Neoplasias Nasofaríngeas/patología , Fosforilación Oxidativa , Proteómica/métodos , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/genética
6.
BMC Oral Health ; 22(1): 534, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424594

RESUMEN

INTRODUCTION: The incidence of oral cavity squamous cell carcinoma (OSCC) continues to rise. OSCC is associated with a low average survival rate, and most patients have a poor disease prognosis because of delayed diagnosis. We used machine learning techniques to predict high-risk cases of OSCC by using salivary autoantibody levels and demographic and behavioral data. METHODS: We collected the salivary samples of patients recruited from a teaching hospital between September 2008 and December 2012. Ten salivary autoantibodies, sex, age, smoking, alcohol consumption, and betel nut chewing were used to build prediction models for identifying patients with a high risk of OSCC. The machine learning algorithms applied in the study were logistic regression, random forest, support vector machine with the radial basis function kernel, eXtreme Gradient Boosting (XGBoost), and a stacking model. We evaluated the performance of the models by using the area under the receiver operating characteristic curve (AUC), with simulations conducted 100 times. RESULTS: A total of 337 participants were enrolled in this study. The best predictive model was constructed using a stacking algorithm with original forms of age and logarithmic levels of autoantibodies (AUC = 0.795 ± 0.055). Adding autoantibody levels as a data source significantly improved the prediction capability (from 0.698 ± 0.06 to 0.795 ± 0.055, p < 0.001). CONCLUSIONS: We successfully established a prediction model for high-risk cases of OSCC. This model can be applied clinically through an online calculator to provide additional personalized information for OSCC diagnosis, thereby reducing the disease morbidity and mortality rates.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello , Aprendizaje Automático , Biomarcadores , Autoanticuerpos
7.
RNA Biol ; 18(5): 796-808, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406999

RESUMEN

The pathogenic human enterovirus EV-A71 has raised serious public health concerns. A hallmark of EV-A71 infection is the distortion of host transcriptomes in favour of viral replication. While high-throughput approaches have been exploited to dissect these gene dysregulations, they do not fully capture molecular perturbations at the single-cell level and in a physiologically relevant context. In this study, we applied a single-cell RNA sequencing approach on infected differentiated enterocyte cells (C2BBe1), which model the gastrointestinal epithelium targeted initially by EV-A71. Our single-cell analysis of EV-A71-infected culture provided several lines of illuminating observations: 1) This systems approach demonstrated extensive cell-to-cell variation in a single culture upon viral infection and delineated transcriptomic differences between the EV-A71-infected and bystander cells. 2) By analysing expression profiles of known EV-A71 receptors and entry facilitation factors, we found that ANXA2 was closely correlated in expression with the viral RNA in the infected population, supporting its role in EV-A71 entry in the enteric cells. 3) We further catalogued dysregulated lncRNAs elicited by EV-A71 infection and demonstrated the functional implication of lncRNA CYTOR in promoting EV-A71 replication. Viewed together, our single-cell transcriptomic analysis illustrated at the single-cell resolution the heterogeneity of host susceptibility to EV-A71 and revealed the involvement of lncRNAs in host antiviral response.


Asunto(s)
Enterovirus Humano A/patogenicidad , Interacciones Huésped-Patógeno/genética , Transcriptoma , Células Cultivadas , Enterocitos/metabolismo , Enterocitos/patología , Enterocitos/virología , Enterovirus Humano A/genética , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/genética , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/virología , ARN Largo no Codificante/genética , Análisis de la Célula Individual , Replicación Viral/genética
8.
Mol Cell Proteomics ; 18(9): 1796-1806, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31253657

RESUMEN

Oral cavity squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. In Taiwan, OSCC is the fifth leading cause of cancer-related mortality and leads to 2800 deaths per year. The poor outcome of OSCC patients is principally ascribed to the fact that this disease is often advanced at the time of diagnosis, suggesting that early detection of OSCC is urgently needed. Analysis of cancer-related body fluids is one promising approach to identify biomarker candidates of cancers. To identify OSCC biomarkers, salivary proteomes of OSCC patients, individuals with oral potentially malignant disorders (OPMDs), and healthy volunteers were comparatively profiled with isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry (MS). The salivary levels of 67 and 18 proteins in the OSCC group are elevated and decreased compared with that in the noncancerous group (OPMD and healthy groups), respectively. The candidate biomarkers were further selected using the multiple reaction monitoring (MRM)-MS and validated with the immunoassays. More importantly, the higher salivary level of three proteins, complement factor H (CFH), fibrinogen alpha chain (FGA), and alpha-1-antitrypsin (SERPINA1) was correlated with advanced stages of OSCC. Our results indicate that analysis of salivary proteome is a feasible strategy for biomarker discovery, and the three proteins are potential salivary markers for OSCC diagnosis.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/diagnóstico , Neoplasias de la Boca/diagnóstico , Saliva/química , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidad , Estudios de Casos y Controles , Factor H de Complemento/análisis , Ensayo de Inmunoadsorción Enzimática , Femenino , Fibrinógeno/análisis , Humanos , Límite de Detección , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/mortalidad , Lesiones Precancerosas/metabolismo , Pronóstico , Proteómica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , alfa 1-Antitripsina/análisis
9.
Mol Cell Proteomics ; 18(10): 1939-1949, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31315917

RESUMEN

Patients with oral cavity squamous cell carcinoma (OSCC) are frequently first diagnosed at an advanced stage, leading to poor prognosis and high mortality rates. Early detection of OSCC using body fluid-accessible biomarkers may improve the prognosis and survival rate of OSCC patients. As tumor interstitial fluid is a proximal fluid enriched with cancer-related proteins, it is a useful reservoir suitable for the discovery of cancer biomarkers and dysregulated biological pathways in tumor microenvironments. Thus, paired interstitial fluids of tumor (TIF) and adjacent noncancerous (NIF) tissues from 10 OSCC patients were harvested and analyzed using one-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). Using label-free spectral counting-based quantification, 113 proteins were found to be up-regulated in the TIFs compared with the NIFs. The gene set enrichment analysis (GSEA) revealed that the differentially expressed TIF proteins were highly associated with aminoacyl tRNA biosynthesis pathway. The elevated levels of 4 proteins (IARS, KARS, WARS, and YARS) involved in the aminoacyl tRNA biosynthesis were verified in the OSCC tissues with immunohistochemistry (IHC). In addition, nidogen-1 (NID1) was selected for verification as an OSCC biomarker. Salivary level of NID1 in OSCC patients (n = 48) was significantly higher than that in the healthy individuals (n = 51) and subjects with oral potentially malignant disorder (OPMD; n = 53). IHC analysis showed that NID1 level in OSCC tissues was increased compared with adjacent noncancerous epithelium (n = 222). Importantly, the elevated NID1 level was correlated with the advanced stages of OSCC, as well as the poor survival of OSCC patients. Collectively, the results suggested that TIF analysis facilitates understanding of the OSCC microenvironment and that salivary NID1 may be a useful biomarker for OSCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/patología , Líquido Extracelular/metabolismo , Neoplasias de la Boca/patología , Proteómica/métodos , Regulación hacia Arriba , Adulto , Anciano , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/metabolismo , Estadificación de Neoplasias , Pronóstico , Transducción de Señal , Análisis de Supervivencia
10.
RNA Biol ; 17(4): 608-622, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32009553

RESUMEN

Enteroviruses, which may cause neurological complications, have become a public health threat worldwide in recent years. Interactions between cellular proteins and enteroviral proteins could interfere with cellular biological processes to facilitate viral replication in infected cells. Enteroviral RNA-dependent RNA polymerase (RdRP), known as 3D protein, mainly functions as a replicase for viral RNA synthesis in infected cells. However, the 3D protein encoded by enterovirus A71 (EV-A71) could also interact with several cellular proteins to regulate cellular events and responses during infection. To globally investigate the functions of the EV-A71 3D protein in regulating biological processes in host cells, we performed immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify host proteins that may associate with the 3D protein. We found that the 3D protein interacts with factors involved in translation-related biological processes, including ribosomal proteins. In addition, polysome profiling analysis showed that the 3D protein cosediments with small and large subunits of ribosomes. We further discovered that the EV-A71 3D protein could enhance EV-A71 internal ribosome entry site (IRES)-dependent translation as well as cap-dependent translation. Collectively, this research demonstrated that the RNA polymerase encoded by EV-A71 could join a functional ribosomal complex and positively regulate viral and host translation.


Asunto(s)
Enterovirus Humano A/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Línea Celular , Cromatografía Liquida , Células HEK293 , Células HeLa , Humanos , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , Espectrometría de Masas en Tándem , Proteínas Virales/metabolismo
11.
Sensors (Basel) ; 20(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054134

RESUMEN

The incidence of oral squamous cell carcinoma (OSCC), which is one of the most common cancers worldwide, has been increasing. Serum anti-p53 autoantibody is one of the most sensitive biomarkers for OSCC. Currently, the most commonly used method on clinical screening platforms is the enzyme-linked immunosorbent assay, owing to its high specificity and repeatability. However, conducting immunoassays on 96-well plates is typically time consuming, thereby limiting its clinical applications for fast diagnosis and immediate prognosis of rapidly progressive diseases. The present study performed immunoassays in glass capillaries of 1-mm internal diameter, which increases the surface to volume ratio of the reaction, to shorten the time needed for immunoassay. The immunoassay was automated while using linear motorized stages and a syringe pump. The results indicated that, when compared with the 96-well plate immunoassay, the glass capillary immunoassay decreased the reaction time from typical 120 min to 45 min, reduced the amount of reagent from typical 50 µL to 15 µL, and required only simple equipment setup. Moreover, the limit of detection for glass capillary anti-p53 autoantibody immunoassay was 0.46 ng mL-1, which is close to the 0.19 ng mL-1 value of the conventional 96-well plate assay, and the glass capillary method had a broader detection range. The apparatus was used to detect the serum anti-p53 autoantibody concentration in clinical patients and compare its results with the conventional 96-well plate method results, which suggested that both of the methods detect the same trend in the relative concentration of serum anti-p53 autoantibody in healthy individuals or patients with OSCC.


Asunto(s)
Autoanticuerpos/sangre , Carcinoma de Células Escamosas/diagnóstico , Inmunoensayo/métodos , Neoplasias de la Boca/diagnóstico , Proteína p53 Supresora de Tumor/inmunología , Automatización , Biomarcadores/sangre , Vidrio/química , Humanos , Inmunoensayo/instrumentación , Límite de Detección
12.
Molecules ; 25(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093124

RESUMEN

Epidermal growth factor receptor (EGFR) is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC), which is the major type of lung cancer. The EGFR tyrosine kinase inhibitors (TKIs) are the approved treatment for patients harboring activating mutations in the EGFR kinase. However, most of the patients treated with EGFR-TKIs developed resistance. Therefore, the development of compounds exhibiting unique antitumor activities might help to improve the management of NSCLC patients. The total flavonoids from Daphne genkwa Sieb. et Zucc. have been shown to contain antitumor activity. Here, we have isolated a novel flavonoid hydroxygenkwanin (HGK) that displays selective cytotoxic effects on all of the NSCLC cells tested. In this study, we employed NSCLC cells harboring EGFR mutations and xenograft mouse model to examine the antitumor activity of HGK on TKI-resistant NSCLC cells. The results showed that HGK suppressed cancer cell viability both in vitro and in vivo. Whole-transcriptome analysis suggests that EGFR is a potential upstream regulator that is involved in the gene expression changes affected by HGK. In support of this analysis, we presented evidence that HGK reduced the level of EGFR and inhibited several EGFR-downstream signalings. These results suggest that the antitumor activity of HGK against TKI-resistant NSCLC cells acts by enhancing the degradation of EGFR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Flavonoides/farmacología , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Proteolisis/efectos de los fármacos , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Supervivencia Celular/efectos de los fármacos , Daphne/química , Receptores ErbB/metabolismo , Flavonoides/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos
13.
Mol Cell Proteomics ; 16(5): 799-811, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28235782

RESUMEN

Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Neoplasias de la Boca/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Calibración , Estudios de Casos y Controles , Humanos , Límite de Detección , Neoplasias de la Boca/diagnóstico , Neoplasias de Células Escamosas/diagnóstico , Neoplasias de Células Escamosas/metabolismo , Reproducibilidad de los Resultados
14.
BMC Pulm Med ; 19(1): 108, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31215423

RESUMEN

BACKGROUND: We previously demonstrated that the pleural levels of proteins (neutrophil gelatinase-associated lipocalin/NGAL, calprotectin, bactericidal permeability-increasing/BPI, azurocidin 1/AZU-1) were valuable markers for identifying complicated PPE (CPPE). Herein, this study was performed to evaluate whether these proteins are useful as serological markers for identifying CPPE and empyema. METHODS: A total of 137 participates were enrolled in this study. The levels of NGAL, calprotectin, BPI and AZU-1 were measured in serum and pleural fluid by enzyme-linked immunosorbent assay. We also characterized the diagnostic values of these markers between different groups. RESULTS: The serum levels of NGAL, calprotectin, and BPI in PPE patients were significantly higher than those in transudates, noninfectious exudates, and healthy controls. The area under the curve (AUC) values of NGAL, calprotectin, and BPI for distinguishing PPE from transudates or noninfectious exudates were around 0.861 to 0.953. In PPE group, serum NGAL and calprotectin levels were significantly elevated in patients with CPPE and empyema than in those with UPPE, whereas the serum BPI levels were similar between these two groups. In CPPE and empyema patients, the serum NGAL showed a positive correlation with the pleural fluid NGAL (r = 0.417, p <  0.01). When combined with serum CRP, the sensitivity and specificity of serum calprotectin for identifying CPPE and empyema were the highest at 73.52% and 80.55%, respectively. CONCLUSIONS: We concluded that serum calprotectin and NGAL were adjuvant serological markers for CPPE and empyema diagnosis. Patients present with pneumonia and pleural effusion signs in the chest x-ray and the combination of serum calprotectin and CRP constitutes a more highly sensitive and specific assay for identifying CPPE and empyema.


Asunto(s)
Empiema Pleural/diagnóstico , Complejo de Antígeno L1 de Leucocito/sangre , Lipocalina 2/sangre , Derrame Pleural/diagnóstico , Neumonía/diagnóstico , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Biomarcadores/sangre , Estudios de Casos y Controles , Empiema Pleural/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Derrame Pleural/etiología , Neumonía/complicaciones , Curva ROC , Sensibilidad y Especificidad , Taiwán
15.
Proc Natl Acad Sci U S A ; 113(41): 11549-11554, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663741

RESUMEN

Most cases of oral squamous cell carcinoma (OSCC) develop from visible oral potentially malignant disorders (OPMDs). The latter exhibit heterogeneous subtypes with different transformation potentials, complicating the early detection of OSCC during routine visual oral cancer screenings. To develop clinically applicable biomarkers, we collected saliva samples from 96 healthy controls, 103 low-risk OPMDs, 130 high-risk OPMDs, and 131 OSCC subjects. These individuals were enrolled in Taiwan's Oral Cancer Screening Program. We identified 302 protein biomarkers reported in the literature and/or through in-house studies and prioritized 49 proteins for quantification in the saliva samples using multiple reaction monitoring-MS. Twenty-eight proteins were successfully quantified with high confidence. The quantification data from non-OSCC subjects (healthy controls + low-risk OPMDs) and OSCC subjects in the training set were subjected to classification and regression tree analyses, through which we generated a four-protein panel consisting of MMP1, KNG1, ANXA2, and HSPA5. A risk-score scheme was established, and the panel showed high sensitivity (87.5%) and specificity (80.5%) in the test set to distinguish OSCC samples from non-OSCC samples. The risk score >0.4 detected 84% (42/50) of the stage I OSCCs and a significant portion (42%) of the high-risk OPMDs. Moreover, among 88 high-risk OPMD patients with available follow-up results, 18 developed OSCC within 5 y; of them, 77.8% (14/18) had risk scores >0.4. Our four-protein panel may therefore offer a clinically effective tool for detecting OSCC and monitoring high-risk OPMDs through a readily available biofluid.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Carcinoma de Células Escamosas/patología , Cromatografía Liquida , Demografía , Detección Precoz del Cáncer , Chaperón BiP del Retículo Endoplásmico , Femenino , Estudios de Seguimiento , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Neoplasias de la Boca/patología , Estadificación de Neoplasias , Factores de Riesgo , Saliva/metabolismo , Taiwán
16.
Proteomics ; 18(5-6): e1700195, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29334195

RESUMEN

Staphylococcus aureus is a bacterial pathogen that produces and exports many virulence factors that cause diseases in humans. PrsA, a membrane-bound foldase, is expressed ubiquitously in Gram-positive bacteria and required for the folding of exported proteins into a stable and active structure. To understand the involvement of PrsA in posttranslocational protein folding in S. aureus, a PrsA-deficient mutant of S. aureus HG001 was constructed. Using isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry analyses, the exoproteomes of PrsA mutant and wild type S. aureus were comparatively profiled, and 163 cell wall-associated proteins and 67 exoproteins with altered levels have been identified in the PrsA-deficient mutant. Bioinformatics analyses further reveal that prsA deletion altered the amounts of proteins that are potentially involved in the regulation of cell surface properties and bacterial pathogenesis. To determine the relevancy of our findings, we investigated the functional consequence of prsA deletion in S. aureus. PrsA deficiency can enhance bacterial autoaggregation and increase the adhesion ability of S. aureus to human lung epithelial cells. Moreover, mice infected with PrsA-deficient S. aureus had a better survival rate compared with those infected with the wild-type S. aureus. Collectively, our findings reveal that PrsA is required for the posttranslocational folding of numerous exported proteins and critically affects the cell surface properties and pathogenesis of S. aureus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteoma/análisis , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Células A549 , Animales , Adhesión Bacteriana , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Lipoproteínas/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Mutación , Pliegue de Proteína , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Propiedades de Superficie , Factores de Virulencia/genética
17.
J Proteome Res ; 17(4): 1474-1484, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29558158

RESUMEN

Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/química , ARN Mensajero/antagonistas & inhibidores , Proteínas no Estructurales Virales/farmacología , Animales , Factor de Especificidad de Desdoblamiento y Poliadenilación , Interacciones Microbiota-Huesped , Humanos , Immunoblotting , Inmunoprecipitación , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Unión Proteica , Factores de Escisión y Poliadenilación de ARNm
18.
Mol Cell Proteomics ; 15(7): 2396-410, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27161446

RESUMEN

Lung cancer is the leading cause of cancer-related death worldwide. Both diagnostic and prognostic biomarkers are urgently needed to increase patient survival. In this study, we identified/quantified 1763 proteins from paired adenocarcinoma (ADC) tissues with different extents of lymph node (LN) involvement using an iTRAQ-based quantitative proteomic analysis. Based on a bioinformatics analysis and literature search, we selected six candidates (ERO1L, PABPC4, RCC1, RPS25, NARS, and TARS) from a set of 133 proteins that presented a 1.5-fold increase in expression in ADC tumors without LN metastasis compared with adjacent normal tissues. These six proteins were further verified using immunohistochemical staining and Western blot analyses. The protein levels of these six candidates were higher in tumor tissues compared with adjacent normal tissues. The ERO1L and NARS levels were positively associated with LN metastasis. Importantly, ERO1L overexpression in patients with early-stage ADC was positively correlated with poor survival, suggesting that ERO1L overexpression in primary sites of early-stage cancer tissues indicates a high risk for cancer micrometastasis. Moreover, we found that knockdown of either ERO1L or NARS reduced the viability and migration ability of ADC cells. Our results collectively provide a potential biomarker data set for ADC diagnosis/prognosis and reveal novel roles of ERO1L and NARS in ADC progression.


Asunto(s)
Adenocarcinoma/metabolismo , Aspartato-ARNt Ligasa/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/metabolismo , Proteómica/métodos , Aminoacil-ARN de Transferencia/metabolismo , Regulación hacia Arriba , Adenocarcinoma del Pulmón , Adulto , Anciano , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Análisis de Supervivencia
19.
Mol Cell Proteomics ; 14(9): 2466-78, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26081836

RESUMEN

More than 380,000 new cases of bladder cancer are diagnosed worldwide, accounting for ∼150,200 deaths each year. To discover potential biomarkers of bladder cancer, we employed a strategy combining laser microdissection, isobaric tags for relative and absolute quantitation labeling, and liquid chromatography-tandem MS (LC-MS/MS) analysis to profile proteomic changes in fresh-frozen bladder tumor specimens. Cellular proteins from four pairs of surgically resected primary bladder cancer tumor and adjacent nontumorous tissue were extracted for use in two batches of isobaric tags for relative and absolute quantitation experiments, which identified a total of 3220 proteins. A DAVID (database for annotation, visualization and integrated discovery) analysis of dysregulated proteins revealed that the three top-ranking biological processes were extracellular matrix organization, extracellular structure organization, and oxidation-reduction. Biological processes including response to organic substances, response to metal ions, and response to inorganic substances were highlighted by up-expressed proteins in bladder cancer. Seven differentially expressed proteins were selected as potential bladder cancer biomarkers for further verification. Immunohistochemical analyses showed significantly elevated levels of three proteins-SLC3A2, STMN1, and TAGLN2-in tumor cells compared with noncancerous bladder epithelial cells, and suggested that TAGLN2 could be a useful tumor tissue marker for diagnosis (AUC = 0.999) and evaluating lymph node metastasis in bladder cancer patients. ELISA results revealed significantly increased urinary levels of both STMN1 and TAGLN2 in bladder cancer subgroups compared with control groups. In comparisons with age-matched hernia urine specimens, urinary TAGLN2 in bladder cancer samples showed the largest fold change (7.13-fold), with an area-under-the-curve value of 0.70 (p < 0.001, n = 205). Overall, TAGLN2 showed the most significant overexpression in individual bladder cancer tissues and urine specimens, and thus represents a potential biomarker for noninvasive screening for bladder cancer. Our findings highlight the value of bladder tissue proteome in providing valuable information for future validation studies of potential biomarkers in urothelial carcinoma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Proteómica/métodos , Estatmina/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Anciano , Biomarcadores de Tumor/orina , Cromatografía Liquida , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Microdisección , Proteínas de Microfilamentos/orina , Persona de Mediana Edad , Proteínas Musculares/orina , Estatmina/orina , Espectrometría de Masas en Tándem , Neoplasias de la Vejiga Urinaria/orina
20.
Mol Cell Proteomics ; 14(4): 917-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25638566

RESUMEN

Pleural effusion (PE), a tumor-proximal body fluid, may be a promising source for biomarker discovery in human cancers. Because a variety of pathological conditions can lead to PE, characterization of the relative PE proteomic profiles from different types of PEs would accelerate discovery of potential PE biomarkers specifically used to diagnose pulmonary disorders. Using quantitative proteomic approaches, we identified 772 nonredundant proteins from six types of exudative PEs, including three malignant PEs (MPE, from lung, breast, and gastric cancers), one lung cancer paramalignant PE, and two benign diseases (tuberculosis and pneumonia). Spectral counting was utilized to semiquantify PE protein levels. Principal component analysis, hierarchical clustering, and Gene Ontology of cellular process analyses revealed differential levels and functional profiling of proteins in each type of PE. We identified 30 candidate proteins with twofold higher levels (q<0.05) in lung cancer MPEs than in the two benign PEs. Three potential markers, MET, DPP4, and PTPRF, were further verified by ELISA using 345 PE samples. The protein levels of these potential biomarkers were significantly higher in lung cancer MPE than in benign diseases or lung cancer paramalignant PE. The area under the receiver-operator characteristic curve for three combined biomarkers in discriminating lung cancer MPE from benign diseases was 0.903. We also observed that the PE protein levels were more clearly discriminated in effusions in which the cytological examination was positive and that they would be useful in rescuing the false negative of cytological examination in diagnosis of nonsmall cell lung cancer-MPE. Western blotting analysis further demonstrated that MET overexpression in lung cancer cells would contribute to the elevation of soluble MET in MPE. Our results collectively demonstrate the utility of label-free quantitative proteomic approaches in establishing differential PE proteomes and provide a new database of proteins that can be used to facilitate identification of pulmonary disorder-related biomarkers.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Derrame Pleural/metabolismo , Proteómica/métodos , Área Bajo la Curva , Western Blotting , Línea Celular Tumoral , Análisis por Conglomerados , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Cavidad Pleural/metabolismo , Cavidad Pleural/patología , Derrame Pleural/diagnóstico , Neoplasias Pleurales/secundario , Análisis de Componente Principal , Proteínas Proto-Oncogénicas c-met/metabolismo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA