Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 39(17): e1800007, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29806084

RESUMEN

Treatment of cancer in the peritoneal cavity may be improved with macroscale drug delivery systems that offer control over intraperitoneal concentration of chemotherapeutic agents. Currently, suitable drug carriers to facilitate a sustained release of small hydrophilic drugs such as mitomycin C are lacking. For this purpose, a pH-responsive supramolecular hydrogel based on ureido-pyrimidinone (UPy) chemistry is utilized here. In order to provide a sustained release profile, a lipophilicity-increasing cholesterol conjugation strategy is proposed that enhances affinity between the modified drug (mitomycin-PEG24 -cholesterol, MPC) and the hydrophobic compartments in the UPy gel. Additional advantages of cholesterol conjugation include improved chemical stability and potency of mitomycin C. In vitro the tunability of the system to obtain optimal effective concentrations over time is demonstrated with a combinatorial treatment of mitomycin C and MPC in one UPy hydrogel delivery system.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Colesterol/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Mitomicina/farmacología , Pirimidinonas/química , Urea/química , Antibióticos Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colesterol/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Sustancias Macromoleculares/química , Mitomicina/química , Estructura Molecular , Polietilenglicoles/química , Polietilenglicoles/farmacología , Relación Estructura-Actividad , Urea/análogos & derivados
2.
Adv Healthc Mater ; 13(17): e2303888, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38451476

RESUMEN

Current vascular access options require frequent interventions. In situ tissue engineering (TE) may overcome these limitations by combining the initial success of synthetic grafts with long-term advantages of autologous vessels by using biodegradable grafts that transform into autologous vascular tissue at the site of implantation. Scaffolds (6 mm-Ø) made of supramolecular polycarbonate-bisurea (PC-BU), with a polycaprolactone (PCL) anti-kinking-coil, are implanted between the carotid artery and jugular vein in goats. A subset is bio-functionalized using bisurea-modified-Stromal cell-derived factor-1α (SDF1α) derived peptides and ePTFE grafts as controls. Grafts are explanted after 1 and 3 months, and evaluated for material degradation, tissue formation, compliance, and patency. At 3 months, the scaffold is resorbed and replaced by vascular neo-tissue, including elastin, contractile markers, and endothelial lining. No dilations, ruptures, or aneurysms are observed and grafts are successfully cannulated at termination. SDF-1α-peptide-biofunctionalization does not influence outcomes. Patency is lower in TE grafts (50%) compared to controls (100% patency), predominantly caused by intimal hyperplasia. Rapid remodeling of a synthetic, biodegradable vascular scaffold into a living, compliant arteriovenous fistula is demonstrated in a large animal model. Despite lower patency compared to ePTFE, transformation into autologous and compliant living tissue with self-healing capacity may have long-term advantages.


Asunto(s)
Prótesis Vascular , Cabras , Animales , Andamios del Tejido/química , Implantes Absorbibles , Fístula Arteriovenosa , Poliésteres/química , Arterias Carótidas/cirugía , Ingeniería de Tejidos/métodos , Quimiocina CXCL12/farmacología , Quimiocina CXCL12/metabolismo , Grado de Desobstrucción Vascular
3.
Adv Mater ; 33(37): e2008111, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34337776

RESUMEN

The extracellular matrix (ECM) forms through hierarchical assembly of small and larger polymeric molecules into a transient, hydrogel-like fibrous network that provides mechanical support and biochemical cues to cells. Synthetic, fibrous supramolecular networks formed via non-covalent assembly of various molecules are therefore potential candidates as synthetic mimics of the natural ECM, provided that functionalization with biochemical cues is effective. Here, combinations of slow and fast exchanging molecules that self-assemble into supramolecular fibers are employed to form transient hydrogel networks with tunable dynamic behavior. Obtained results prove that modulating the ratio between these molecules dictates the extent of dynamic behavior of the hydrogels at both the molecular and the network level, which is proposed to enable effective incorporation of cell-adhesive functionalities in these materials. Excitingly, the dynamic nature of the supramolecular components in this system can be conveniently employed to formulate multicomponent supramolecular hydrogels for easy culturing and encapsulation of single cells, spheroids, and organoids. Importantly, these findings highlight the significance of molecular design and exchange dynamics for the application of supramolecular hydrogels as synthetic ECM mimics.


Asunto(s)
Encapsulación Celular/métodos , Hidrogeles/química , Vasos Sanguíneos/citología , Adhesión Celular , Matriz Extracelular/química , Recuperación de Fluorescencia tras Fotoblanqueo , Colorantes Fluorescentes/química , Humanos , Polietilenglicoles/química , Pirimidinonas/sangre , Células Madre/citología , Células Madre/metabolismo
4.
Nat Protoc ; 12(4): 639-663, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28253234

RESUMEN

Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.


Asunto(s)
Neoplasias Óseas/secundario , Huesos/patología , Ingeniería de Tejidos/métodos , Adenocarcinoma , Animales , Proteína Morfogenética Ósea 7/farmacología , Neoplasias Óseas/patología , Huesos/efectos de los fármacos , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Electricidad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Masculino , Ratones , Neoplasias de la Próstata/patología , Ingeniería de Tejidos/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA