Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2401723, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711306

RESUMEN

AgSbTe2 plays a pivotal role in mid-temperature thermoelectric generators (TEGs). Leveraging the seminal advances in cation manipulation within AgSbTe2, this study demonstrates an enhanced TE power factor (PF = S2σ) of 1.5 mWm-1 K-2 and a peak zT of 1.5 at 583 K in an off-stoichiometric Ag1.04Sb0.96Te2 crystal. The introduction of Ge in place of Ag leads to an increased nH as evidenced by the detection of trace Ge4+ through XPS analysis. Further chemical state analysis reveals the simultaneous presence of Ag+, Sb3+, and Ge4+, elucidating the effect of cation modulations. TEM characterizations validate the presence of superlattice structure, and the linear defects discerned within the AgSbTe2 matrix. Consequently, the lattice thermal conductivity κL is substantially reduced in the Ag1.02Ge0.02Sb0.96Te2 crystal, yielding a peak zT of 1.77 at 623 K. This notable advancement is attributed to the counterbalance achieved between the enhanced PF and the reduced κL, facilitated by cation modulation. Additionally, a single-leg TE device incorporating Ag1.02Ge0.02Sb0.96Te2 demonstrates a conversion efficiency of 7% across a temperature gradient (ΔT) of 350 K. This study corroborates the efficacy of cation modulation through thermodynamic approaches and establishes a relationship between transport properties and the presence of defects.

2.
Small ; : e2312206, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483011

RESUMEN

Incorporating dilute doping and controlled synthesis provides a means to modulate the microstructure, defect density, and transport properties. Transmission electron microscopy (TEM) and geometric phase analysis (GPA) have revealed that hot-pressing can increase defect density, which redistributes strain and helps prevent unwanted Ge precipitates formation. An alloy of GeTe with a minute amount of indium added has shown remarkable TE properties compared to its undoped counterpart. Specifically, it achieves a maximum figure-of-merit zT of 1.3 at 683 K and an exceptional TE conversion efficiency of 2.83% at a hot-side temperature of 723 K. Significant zT and conversion efficiency improvements are mainly due to domain density engineering facilitated by an effective hot-pressing technique applied to lightly doped GeTe. The In-GeTe alloy exhibits superior TE properties and demonstrates notable stability under significant thermal gradients, highlighting its promise for use in mid-temperature TE energy generation systems.

3.
Entropy (Basel) ; 22(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33285849

RESUMEN

A novel lightweight Al-Ti-Cr-Mn-V medium-entropy alloy (MEA) system was developed using a nonequiatiomic approach and alloys were produced through arc melting and drop casting. These alloys comprised a body-centered cubic (BCC) and face-centered cubic (FCC) dual phase with a density of approximately 4.5 g/cm3. However, the fraction of the BCC phase and morphology of the FCC phase can be controlled by incorporating other elements. The results of compression tests indicated that these Al-Ti-Cr-Mn-V alloys exhibited a prominent compression strength (~1940 MPa) and ductility (~30%). Moreover, homogenized samples maintained a high compression strength of 1900 MPa and similar ductility (30%). Due to the high specific compressive strength (0.433 GPa·g/cm3) and excellent combination of strength and ductility, the cast lightweight Al-Ti-Cr-Mn-V MEAs are a promising alloy system for application in transportation and energy industries.

4.
ACS Meas Sci Au ; 4(2): 163-183, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38645581

RESUMEN

The development of artificial receptors has great significance in measurement science and technology. The need for a robust version of natural receptors is getting increased attention because the cost of natural receptors is still high along with storage difficulties. Aptamers, imprinted polymers, and nanozymes are some of the matured artificial receptors in analytical chemistry. Recently, a new direction has been discovered by organic chemists, who can synthesize robust, activity-based, self-immolative organic molecules that have artificial receptor properties for the targeted analytes. Specifically designed trigger moieties implant selectivity and sensitivity. These latent electrochemical redox substrates are highly stable, mass-producible, inexpensive, and eco-friendly. Combining redox substrates with the merits of electrochemical techniques is a good opportunity to establish a new direction in artificial receptors. This Review provides an overview of electrochemical redox substrate design, anatomy, benefits, and biosensing potential. A proper understanding of molecular design can lead to the development of a library of novel self-immolative redox molecules that would have huge implications for measurement science and technology.

5.
Materials (Basel) ; 17(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930268

RESUMEN

Medium-entropy alloys (MEAs) have attracted considerable attention in recent decades due to their exceptional material properties and design flexibility. In this study, lightweight and non-equiatomic MEAs with low density (~5 g/cm3), high strength (yield strength: 1200 MPa), and high ductility (plastic deformation: ≧10%) were explored. We fine-tuned a previously developed Ti-rich MEA by microalloying it with small amounts of Ni (reducing the atomic radius and increasing the elastic modulus) through solid solution strengthening to achieve a series of MEAs with enhanced mechanical properties. Among the prepared MEAs, Ti65Ni1 and Ti65Ni3 exhibited optimal properties in terms of the balance between strength and ductility. Furthermore, the Ti65Ni3 MEA was subjected to thermo-mechanical treatment (TMT) followed by cold rolling 70% (CR70) and cold rolling 85% (CR85). Subsequently, the processed samples were rapidly annealed at 743 °C, 770 °C, 817 °C, and 889 °C at a heating rate of 15 °C/s. X-ray diffraction analysis revealed that the MEA could retain its single-body-centered cubic solid solution structure after TMT. Additionally, the tensile testing results revealed that increasing the annealing temperature led to a decrease in yield strength and an increase in ductility. Notably, the Ti65Ni3 MEA sample that was subjected to CR70 and CR85 processing and annealed for 30 s exhibited high yield strength (>1250 MPa) and ductility (>13%). In particular, the Ti65Ni3 MEA subjected to CR85 exhibited a specific yield strength of 264 MPa·cm3/g, specific tensile strength of 300 MPa·cm3/g, and ductility of >13%.

6.
ACS Appl Mater Interfaces ; 15(44): 51110-51116, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37903337

RESUMEN

Zinc antimonides, particularly the ß-Zn4Sb3 compound, act as prototypes in the early phases of thermoelectric generator (TEG) development. However, their potential applications are constrained by structural instability at elevated temperatures. In this study, introducing a low concentration of aluminum (Al) achieves a highly stable Al-Zn4Sb3, exhibiting an improved peak zT value compared to undoped Zn4Sb3. Notably, a single-leg device utilizing a fully dense Al0.01Zn3.99Sb3 demonstrates an impressive conversion efficiency (η) of 3% even at a temperature difference (ΔT) of 225 K. This result represents an approximately 200% increase compared with the pristine one. The combination of dilute cationic doping and phase diagram engineering solidifies the potential of Zn4Sb3 as an efficient and sustainable green energy device.

7.
J Orofac Orthop ; 84(4): 225-234, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34533584

RESUMEN

PURPOSE: To evaluate the effects of anodization on the friction behavior of beta-titanium (ß-Ti) orthodontic archwires in conventional or self-ligating brackets in vitro. METHODS: ß­Ti archwires (0.018â€¯× 0.025 inch) pre- and postanodization were tested in combination with 0.022-inch stainless steel conventional and self-ligating brackets. The surface composition and oxide thickness of the ß­Ti archwires pre- and postanodization were measured using Auger electron spectroscopy (AES) and transmission electron microscopy (TEM). Detailed surface topography and roughness were assessed using atomic force microscopy (AFM). Surface topographies of the ß­Ti archwires pre- and postanodization were examined using scanning electron microscopy (SEM). Friction was measured using a universal testing machine; the data were statistically analyzed. RESULTS: Postanodization, the identified titanium oxide layer on the surface of the ß­Ti archwires increased in thickness from 10 to 100 nm; at the same time, the values for surface roughness were significantly reduced by half (p < 0.001). The archwire surfaces post anodization were harder and had fewer scratches after the friction test. Anodization significantly reduced 23.77% of the static (p < 0.01) and 25.61% of the kinetic (p < 0.001) friction of the ß­Ti archwires in conventional brackets, while it significantly reduced 85.71% of the static and 84.38% of the kinetic friction (p < 0.01) in self-ligating brackets. CONCLUSION: Anodization reduced the ß­Ti archwire friction, which was particularly more effective in combination with self-ligating brackets. The friction reduction via anodization could be attributed to the increased thickness, surface hardness, and decreased surface roughness of the titanium oxide layer.


Asunto(s)
Soportes Ortodóncicos , Alambres para Ortodoncia , Titanio , Fricción , Ensayo de Materiales , Propiedades de Superficie , Níquel/química , Diseño de Aparato Ortodóncico , Análisis del Estrés Dental
8.
Materials (Basel) ; 16(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36676246

RESUMEN

Single-crystalline tin-selenide (SnSe) has emerged as a high-performance and eco-friendly alternative to the lead-chalcogens often used in mid-temperature thermoelectric (TE) generators. At high temperature >800 K, the phase transition from Pnma to Cmcm causes a significant rise in the TE figure-of-merit (zT) curve. Conversely, the SnSe TE requires a booster at low temperatures, which allows broader applicability from a device perspective. Herein, a synergy of Cu alloy and Ag-coating is realized through a sequential multi-step synthesis, designed to combine different metal deposition effects. Single-crystalline (Cu2Se)x(SnSe)1−x alloys grown by the Bridgman method were then coated with a thin Ag layer by radio frequency (RF) sputtering, and the interlayer epitaxial film was observed via electric-current assisted sintering (ECAS). Consequently, the thin Ag-coating improves the electrical conductivity (σ) and reduces the thermal conductivity (κ) for (Cu2Se)0.005(SnSe)0.995+Ag alloy, increasing the zT curve at close to room temperature (373 K). The incorporation of multistep addition by ECAS enables tuning of the overall solubility of the alloy, which opens a new avenue to optimize TE performance in anisotropic 2D materials.

9.
Adv Sci (Weinh) ; 9(26): 2201802, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177250

RESUMEN

Thermoelectric (TE) generators have come a long way since the first commercial apparatus launched in the 1950s. Since then, the ß-Zn4Sb3 has manifested its potential as a cost-effective and environmentally friendly TE generator compared with the tellurium-bearing TE materials. Although the ß-Zn4Sb3 features an intrinsically low thermal conductivity κ, it suffers from a long-lasting structural instability issue arising from the highly mobile zinc ions. Herein, the dilute Ga dopant gives rise to the aliovalent substitution, lowers the mobile zinc ions, and optimizes the hole carrier concentration n H simultaneously. Meanwhile, the formation of nano-moiré fringes suggests the modulated distribution of point defect that results from soluble Ga in a ß-Zn4Sb3 lattice, which elicits an ultralow lattice thermal conductivity κ L = 0.2 W m-1 K-1 in a (Zn0.992Ga0.008)4Sb3 alloy. Hence, a fully dense ß-Zn4Sb3 incorporated with the dilute Ga doping reveals superior structural stability with a peak zT > 1.4 at 623 K. In this work, the aliovalent dilute doping coupled with phase diagram engineering optimizes the fluxes of moving electrons and charged ions, which stabilizes the single-phase ß-Zn4Sb3 while boosting the TE performance at the mid-temperature region. The synergistic strategies endow the ionic crystals with a thermodynamic route, which opens up a new category for high-performance and thermal robust TE alloys.

10.
Materials (Basel) ; 15(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36143635

RESUMEN

Most medium entropy alloys (MEAs) exhibit excellent mechanical properties, but their applications are limited because of their high density. This study explores a series of lightweight nonequiatomic Ti65(AlCrNbV)35-xZrx (x = 3, 5, 7, and 10) MEAs with a low density, high strength, and high ductility. To achieve solid solution strengthening, Zr with a large atomic radius was used. In addition, various thermomechanical treatment parameters were adopted to further improve the MEAs' mechanical properties. The density of the MEAs was revealed to be approximately 5 g/cm3, indicating that they were lightweight. Through an X-ray diffraction analysis, the MEAs were revealed to have a single body-centered cubic structure not only in the as-cast state but also after thermomechanical treatment. In terms of mechanical properties, all the as-cast MEAs with Zr additions achieved excellent performance (>1000 MPa tensile yield strength and 20% tensile ductility). In addition, hot rolling effectively eliminated the defects of the MEAs; under a given yield strength, hot-rolled MEAs exhibited superior ductility relative to non-hot-rolled MEAs. Overall, the Ti65(AlCrNbV)28Zr7 MEAs exhibited an optimum combination of mechanical properties (yield strength > 1200 MPa, plastic strain > 15%) after undergoing hot rolling 50%, cold rolling 70%, and rapid annealing for 30 to 50 s (at a temperature of approximately 850 °C) with a heating rate of 15 K/s. With their extremely high specific yield strength (264 MPa·g/cm3) and high ductility (22%), the Ti65(AlCrNbV)28Zr7 MEAs demonstrate considerable potential for energy and transportation applications.

11.
Materials (Basel) ; 14(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34361417

RESUMEN

Most high-entropy alloys and medium-entropy alloys (MEAs) possess outstanding mechanical properties. In this study, a series of lightweight nonequiatomic Al50-Ti-Cr-Mn-V MEAs with a dual phase were produced through arc melting and drop casting. These cast alloys were composed of body-centered cubic and face-centered cubic phases. The density of all investigated MEAs was less than 5 g/cm3 in order to meet energy and transportation industry requirements. The effect of each element on the microstructure evolution and mechanical properties of these MEAs was investigated. All the MEAs demonstrated outstanding compressive strength, with no fractures observed after a compressive strain of 20%. Following the fine-tuning of the alloy composition, the Al50Ti20Cr10Mn15V5 MEA exhibited the most compressive strength (~1800 MPa) and ductility (~34%). A significant improvement in the mechanical compressive properties was achieved (strength of ~2000 MPa, strain of ~40%) after annealing (at 1000 °C for 0.5 h) and oil-quenching. With its extremely high specific compressive strength (452 MPa·g/cm3) and ductility, the lightweight Al50Ti20Cr10Mn15V5 MEA demonstrates good potential for energy or transportation applications in the future.

12.
Adv Mater ; 33(1): e2005612, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33215757

RESUMEN

Phase transition in thermoelectric (TE) material is a double-edged sword-it is undesired for device operation in applications, but the fluctuations near an electronic instability are favorable. Here, Sb doping is used to elicit a spontaneous composition fluctuation showing uphill diffusion in GeTe that is otherwise suspended by diffusionless athermal cubic-to-rhombohedral phase transition at around 700 K. The interplay between these two phase transitions yields exquisite composition fluctuations and a coexistence of cubic and rhombohedral phases in favor of exceptional figures-of-merit zT. Specifically, alloying GeTe by Sb2 Te3 significantly suppresses the thermal conductivity while retaining eligible carrier concentration over a wide composition range, resulting in high zT values of >2.6. These results not only attest to the efficacy of using phase transition in manipulating the microstructures of GeTe-based materials but also open up a new thermodynamic route to develop higher performance TE materials in general.

13.
Adv Mater ; 32(12): e1906457, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32048359

RESUMEN

Thermoelectric (TE) research is not only a course of materials by discovery but also a seedbed of novel concepts and methodologies. Herein, the focus is on recent advances in three emerging paradigms: entropy engineering, phase-boundary mapping, and liquid-like TE materials in the context of thermodynamic routes. Specifically, entropy engineering is underpinned by the core effects of high-entropy alloys; the extended solubility limit, the tendency to form a high-symmetry crystal structure, severe lattice distortions, and sluggish diffusion processes afford large phase space for performance optimization, high electronic-band degeneracy, rich multiscale microstructures, and low lattice thermal conductivity toward higher-performance TE materials. Entropy engineering is successfully implemented in half-Huesler and IV-VI compounds. In Zintl phases and skutterudites, the efficacy of phase-boundary mapping is demonstrated through unraveling the profound relations among chemical compositions, mutual solubilities of constituent elements, phase instability, microstructures, and resulting TE properties at the operation temperatures. Attention is also given to liquid-like TE materials that exhibit lattice thermal conductivity at lower than the amorphous limit due to intensive mobile ion disorder and reduced vibrational entropy. To conclude, an outlook on the development of next-generation TE materials in line with these thermodynamic routes is given.

14.
Sci Rep ; 9(1): 8616, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197195

RESUMEN

In this work, a high thermoelectric figure of merit, zT of 1.9 at 740 K is achieved in Ge1-xBixTe crystals through the concurrent of Seebeck coefficient enhancement and thermal conductivity reduction with Bi dopants. The substitution of Bi for Ge not only compensates the superfluous hole carriers in pristine GeTe but also shifts the Fermi level (EF) to an eligible region. Experimentally, with moderate 6-10% Bi dopants, the carrier concentration is drastically decreased from 8.7 × 1020 cm-3 to 3-5 × 1020 cm-3 and the Seebeck coefficient is boosted three times to 75 µVK-1. In the meantime, based on the density functional theory (DFT) calculation, the Fermi level EF starts to intersect with the pudding mold band at L point, where the band effective mass is enhanced. The enhanced Seebeck coefficient effectively compensates the decrease of electrical conductivity and thus successfully maintain the power factor as large as or even superior than that of the pristine GeTe. In addition, the Bi doping significantly reduces both thermal conductivities of carriers and lattices to an extremely low limit of 1.57 W m-1K-1 at 740 K with 10% Bi dopants, which is an about 63% reduction as compared with that of pristine GeTe. The elevated figure of merit observed in Ge1-xBixTe specimens is therefore realized by synergistically optimizing the power factor and downgrading the thermal conductivity of alloying effect and lattice anharmonicity caused by Bi doping.

15.
ACS Omega ; 4(3): 5442-5450, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459709

RESUMEN

Single-crystalline SnSe has attracted much attention because of its record high figure-of-merit ZT ≈ 2.6; however, this high ZT has been associated with the low mass density of samples which leaves the intrinsic ZT of fully dense pristine SnSe in question. To this end, we prepared high-quality fully dense SnSe single crystals and performed detailed structural, electrical, and thermal transport measurements over a wide temperature range along the major crystallographic directions. Our single crystals were fully dense and of high purity as confirmed via high statistics 119Sn Mössbauer spectroscopy that revealed <0.35 at. % Sn(IV) in pristine SnSe. The temperature-dependent heat capacity (C p) provided evidence for the displacive second-order phase transition from Pnma to Cmcm phase at T c ≈ 800 K and a small but finite Sommerfeld coefficient γ0 which implied the presence of a finite Fermi surface. Interestingly, despite its strongly temperature-dependent band gap inferred from density functional theory calculations, SnSe behaves like a low-carrier-concentration multiband metal below 600 K, above which it exhibits a semiconducting behavior. Notably, our high-quality single-crystalline SnSe exhibits a thermoelectric figure-of-merit ZT ∼1.0, ∼0.8, and ∼0.25 at 850 K along the b, c, and a directions, respectively.

16.
Sci Rep ; 7: 45177, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28327655

RESUMEN

The thermal stability of joints in thermoelectric (TE) modules, which are degraded during interdiffusion between the TE material and the contacting metal, needs to be addressed in order to utilize TE technology for competitive, sustainable energy applications. Herein, we deposit a 200 nm-thick Zr-based thin-film metallic glass (TFMG), which acts as an effective diffusion barrier layer with low electrical contact resistivity, on a high-zT Se-doped AgSbTe2 substrate. The reaction couples structured with TFMG/TE are annealed at 673 K for 8-360 hours and analyzed by electron microscopy. No observable IMCs (intermetallic compounds) are formed at the TFMG/TE interface, suggesting the effective inhibition of atomic diffusion that may be attributed to the grain-boundary-free structure of TFMG. The minor amount of Se acts as a tracer species, and a homogeneous Se-rich region is found nearing the TFMG/TE interface, which guarantees satisfactory bonding at the joint. The diffusion of Se, which has the smallest atomic volume of all the elements from the TE substrate, is found to follow Fick's second law. The calculated diffusivity (D) of Se in TFMG falls in the range of D~10-20-10-23(m2/s), which is 106~107 and 1012~1013 times smaller than those of Ni [10-14-10-17(m2/s)] and Cu [10-8-10-11(m2/s)] in Bi2Te3, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA