Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(35): 21747-21756, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817425

RESUMEN

Arabidopsis AINTEGUMENTA (ANT), an AP2 transcription factor, is known to control plant growth and floral organogenesis. In this study, our transcriptome analysis and in situ hybridization assays of maize embryonic leaves suggested that maize ANT1 (ZmANT1) regulates vascular development. To better understand ANT1 functions, we determined the binding motif of ZmANT1 and then showed that ZmANT1 binds the promoters of millet SCR1, GNC, and AN3, which are key regulators of Kranz anatomy, chloroplast development, and plant growth, respectively. We generated a mutant with a single-codon deletion and two frameshift mutants of the ANT1 ortholog in the C4 millet Setaria viridis by the CRISPR/Cas9 technique. The two frameshift mutants displayed reduced photosynthesis efficiency and growth rate, smaller leaves, and lower grain yields than wild-type (WT) plants. Moreover, their leaves sporadically exhibited distorted Kranz anatomy and vein spacing. Conducting transcriptomic analysis of developing leaves in the WT and the three mutants we identified differentially expressed genes (DEGs) in the two frameshift mutant lines and found many down-regulated DEGs enriched in photosynthesis, heme, tetrapyrrole binding, and antioxidant activity. In addition, we predicted many target genes of ZmANT1 and chose 13 of them to confirm binding of ZmANT1 to their promoters. Based on the above observations, we proposed a model for ANT1 regulation of cell proliferation and leaf growth, vascular and vein development, chloroplast development, and photosynthesis through its target genes. Our study revealed biological roles of ANT1 in several developmental processes beyond its known roles in plant growth and floral organogenesis.


Asunto(s)
Translocador 1 del Nucleótido Adenina/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/genética , Translocador 1 del Nucleótido Adenina/fisiología , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cloroplastos/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Mijos/genética , Mijos/metabolismo , Organogénesis de las Plantas/genética , Fotosíntesis/genética , Fotosíntesis/fisiología , Desarrollo de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 116(13): 6451-6456, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850529

RESUMEN

Germinated plant seeds buried in soil undergo skotomorphogenic development before emergence to reach the light environment. Young seedlings transitioning from dark to light undergo photomorphogenic development. During photomorphogenesis, light alters the transcriptome and enhances the translation of thousands of mRNAs during the dark-to-light transition in Arabidopsis young seedlings. About 1,500 of these mRNAs have comparable abundance before and after light treatment, which implies widespread translational repression in dark-grown seedlings. Processing bodies (p-bodies), the cytoplasmic granules found in diverse organisms, can balance the storage, degradation, and translation of mRNAs. However, the function of p-bodies in translation control remains largely unknown in plants. Here we found that an Arabidopsis mutant defective in p-body formation (Decapping 5; dcp5-1) showed reduced fitness under both dark and light conditions. Comparative transcriptome and translatome analyses of wild-type and dcp5-1 seedlings revealed that p-bodies can attenuate the premature translation of specific mRNAs in the dark, including those encoding enzymes for protochlorophyllide synthesis and PIN-LIKES3 for auxin-dependent apical hook opening. When the seedlings protrude from soil, light perception by photoreceptors triggers a reduced accumulation of p-bodies to release the translationally stalled mRNAs for active translation of mRNAs encoding proteins needed for photomorphogenesis. Our data support a key role for p-bodies in translation repression, an essential mechanism for proper skotomorphogenesis and timely photomorphogenesis in seedlings.


Asunto(s)
Arabidopsis/fisiología , Luz , Morfogénesis/fisiología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Proteínas Co-Represoras/efectos de la radiación , Oscuridad , Endorribonucleasas/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Morfogénesis/genética , Morfogénesis/efectos de la radiación , Protoclorofilida/biosíntesis , ARN Mensajero/metabolismo , Plantones/citología , Plantones/efectos de la radiación , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 116(8): 3091-3099, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718437

RESUMEN

Time-series transcriptomes of a biological process obtained under different conditions are useful for identifying the regulators of the process and their regulatory networks. However, such data are 3D (gene expression, time, and condition), and there is currently no method that can deal with their full complexity. Here, we developed a method that avoids time-point alignment and normalization between conditions. We applied it to analyze time-series transcriptomes of developing maize leaves under light-dark cycles and under total darkness and obtained eight time-ordered gene coexpression networks (TO-GCNs), which can be used to predict upstream regulators of any genes in the GCNs. One of the eight TO-GCNs is light-independent and likely includes all genes involved in the development of Kranz anatomy, which is a structure crucial for the high efficiency of photosynthesis in C4 plants. Using this TO-GCN, we predicted and experimentally validated a regulatory cascade upstream of SHORTROOT1, a key Kranz anatomy regulator. Moreover, we applied the method to compare transcriptomes from maize and rice leaf segments and identified regulators of maize C4 enzyme genes and RUBISCO SMALL SUBUNIT2 Our study provides not only a powerful method but also novel insights into the regulatory networks underlying Kranz anatomy development and C4 photosynthesis.


Asunto(s)
Redes Reguladoras de Genes/genética , Fotosíntesis/genética , Hojas de la Planta/genética , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Fotoperiodo , Proteínas de Plantas , Ribulosa-Bifosfato Carboxilasa/genética , Zea mays/genética
4.
PLoS Comput Biol ; 16(9): e1007740, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32881861

RESUMEN

The circadian clock is a complex system that plays many important roles in most organisms. Previously, many mathematical models have been used to sharpen our understanding of the Arabidopsis clock, which brought to light the roles of each transcriptional and post-translational regulations. However, the presence of both regulations, instead of either transcription or post-translation, raised curiosity of whether the combination of these two regulations is important for the clock's system. In this study, we built a series of simplified oscillators with different regulations to study the importance of post-translational regulation (specifically, 26S proteasome degradation) in the clock system. We found that a simple transcriptional-based oscillator can already generate sustained oscillation, but the oscillation can be easily destroyed in the presence of transcriptional leakage. Coupling post-translational control with transcriptional-based oscillator in a feed-forward loop will greatly improve the robustness of the oscillator in the presence of basal leakage. Using these general models, we were able to replicate the increased variability observed in the E3 ligase mutant for both plant and mammalian clocks. With this insight, we also predict a plausible regulator of several E3 ligase genes in the plant's clock. Thus, our results provide insights into and the plausible importance in coupling transcription and post-translation controls in the clock system.


Asunto(s)
Relojes Circadianos/genética , Modelos Biológicos , Procesamiento Proteico-Postraduccional/genética , Transcripción Genética/genética , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biología Computacional , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(50): 12823-12828, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30482859

RESUMEN

Deetiolation is an essential developmental process transforming young plant seedlings into the vegetative phase with photosynthetic activities. Light signals initiate this important developmental process by triggering massive reprogramming of the transcriptome and translatome. Compared with the wealth of knowledge of transcriptional regulation, the molecular mechanism underlying this light-triggered translational enhancement remains unclear. Here we show that light-enhanced translation is orchestrated by a light perception and signaling pathway composed of photoreceptors, CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), the phytohormone auxin, target of rapamycin (TOR), and ribosomal protein S6 (RPS6). In deetiolating Arabidopsis seedlings, photoreceptors, including phytochrome A and cryptochromes, perceive far-red and blue light to inactivate the negative regulator COP1, which leads to activation of the auxin pathway for TOR-dependent phosphorylation of RPS6. Arabidopsis mutants defective in TOR, RPS6A, or RPS6B exhibited delayed cotyledon opening, a characteristic of the deetiolating process to ensure timely vegetative development of a young seedling. This study provides a mechanistic view of light-triggered translational enhancement in deetiolating Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Etiolado/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Biosíntesis de Proteínas/fisiología , Plantones/metabolismo , Cotiledón/metabolismo , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Luz , Fosforilación/fisiología , Fotorreceptores de Plantas/metabolismo , Fotosíntesis/fisiología , Fitocromo A/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/fisiología , Transducción de Señal/fisiología , Transcriptoma/fisiología , Ubiquitina-Proteína Ligasas
6.
Proc Natl Acad Sci U S A ; 114(33): E6884-E6891, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28761000

RESUMEN

High vein density, a distinctive trait of C4 leaves, is central to both C3-to-C4 evolution and conversion of C3 to C4-like crops. We tested the hypothesis that high vein density in C4 leaves is due to elevated auxin biosynthesis and transport in developing leaves. Up-regulation of genes in auxin biosynthesis pathways and higher auxin content were found in developing C4 leaves compared with developing C3 leaves. The same observation held for maize foliar (C4) and husk (C3) leaf primordia. Moreover, auxin content and vein density were increased in loss-of-function mutants of Arabidopsis MYC2, a suppressor of auxin biosynthesis. Treatment with an auxin biosynthesis inhibitor or an auxin transport inhibitor led to much fewer veins in new leaves. Finally, both Arabidopsis thaliana auxin efflux transporter pin1 and influx transporter lax2 mutants showed reduced vein numbers. Thus, development of high leaf vein density requires elevated auxin biosynthesis and transport.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/genética , Plantas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico/genética , Vías Biosintéticas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Desarrollo de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/metabolismo , Especificidad de la Especie , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(19): E2477-86, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918418

RESUMEN

Maize is a major crop and a model plant for studying C4 photosynthesis and leaf development. However, a genomewide regulatory network of leaf development is not yet available. This knowledge is useful for developing C3 crops to perform C4 photosynthesis for enhanced yields. Here, using 22 transcriptomes of developing maize leaves from dry seeds to 192 h post imbibition, we studied gene up- and down-regulation and functional transition during leaf development and inferred sets of strongly coexpressed genes. More significantly, we developed a method to predict transcription factor binding sites (TFBSs) and their cognate transcription factors (TFs) using genomic sequence and transcriptomic data. The method requires not only evolutionary conservation of candidate TFBSs and sets of strongly coexpressed genes but also that the genes in a gene set share the same Gene Ontology term so that they are involved in the same biological function. In addition, we developed another method to predict maize TF-TFBS pairs using known TF-TFBS pairs in Arabidopsis or rice. From these efforts, we predicted 1,340 novel TFBSs and 253 new TF-TFBS pairs in the maize genome, far exceeding the 30 TF-TFBS pairs currently known in maize. In most cases studied by both methods, the two methods gave similar predictions. In vitro tests of 12 predicted TF-TFBS interactions showed that our methods perform well. Our study has significantly expanded our knowledge on the regulatory network involved in maize leaf development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Zea mays/genética , Secuencias de Aminoácidos , Arabidopsis/genética , Sitios de Unión , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma de Planta , Familia de Multigenes , Oryza/genética , Fotosíntesis , Regiones Promotoras Genéticas , Unión Proteica , Transcripción Genética
8.
BMC Genomics ; 18(1): 559, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738828

RESUMEN

BACKGROUND: Post-transcriptional control of gene expression mediated by small regulatory RNAs (sRNAs) is vital for growth and development of diverse organisms. The biogenesis of sRNAs is regulated by both positive and negative regulators known to regulate photomorphogenic development. Two microRNAs (miRNAs), miR157 and miR319, also regulate photomorphogenesis. However, genome-wide profiling of sRNAs and their regulation of target genes during photomorphogenesis has been missing. We provide a comprehensive view of sRNA-controlled gene expression in this developmental process. RESULTS: By profiling sRNAs and the 5' ends of degraded mRNAs during the first 24 h of photomorphogenic development in Arabidopsis, we identified 335 sRNA-mediated mRNA cleavage events in de-etiolating seedlings. These cleavage events are primarily resulted from actions of highly expressed miRNAs and irrelevant to the abundance of target mRNAs. In the light, the expression of the slicer protein gene ARGONAUTE1 in the miRNA functioning pathway could be fine-tuned by miRNA168a/b. We also found that miR396a/b positively regulates de-etiolation by suppressing GROWTH REGULATING FACTORs. Our results suggest that the miRNAs are required to tune down the target mRNAs and regulate photomorphogenesis. CONCLUSION: sRNAs may have a broad impact on gene expression regulation for optimized photomorphogenic development. With both positive and negative regulators under the control of sRNAs, young Arabidopsis seedlings can have a timely but not exaggerated developmental adaptation to light.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Perfilación de la Expresión Génica , Luz , Desarrollo de la Planta/genética , Desarrollo de la Planta/efectos de la radiación , ARN Pequeño no Traducido/genética , Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , MicroARNs/genética , ARN Mensajero/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación
9.
Plant Cell Environ ; 40(9): 1735-1747, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28437590

RESUMEN

Light controls vegetative and reproductive development of plants. For a plant, sensing the light input properly ensures coordination with the ever-changing environment. Previously, we found that LIGHT-REGULATED WD1 (LWD1) and LWD2 regulate the circadian clock and photoperiodic flowering. Here, we identified Arabidopsis YET ANOTHER KINASE1 (AtYAK1), an evolutionarily conserved protein and a member of dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), as an interacting protein of LWDs. Our study revealed that AtYAK1 is an important regulator for various light responses, including the circadian clock, photomorphogenesis and reproductive development. AtYAK1 could antagonize the function of LWDs in regulating the circadian clock and photoperiodic flowering. By examining phenotypes of atyak1, we found that AtYAK1 regulated light-induced period-length shortening and photomorphogenic development. Moreover, AtYAK1 mediated plant fertility especially under inferior light conditions including low light and short-day length. This study discloses a new regulator connecting environmental light to plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Luz , Desarrollo de la Planta/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Flores/fisiología , Flores/efectos de la radiación , Morfogénesis/efectos de la radiación , Mutación/genética , Fosforilación/efectos de la radiación , Fotoperiodo , Infertilidad Vegetal/efectos de la radiación , Unión Proteica/efectos de la radiación , Especificidad por Sustrato/efectos de la radiación
10.
Plant Cell ; 26(7): 2858-72, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25052717

RESUMEN

Light regulates growth and developmental processes in plants via global transcriptome adjustment, translational control, and multilayered posttranslational modification of proteins. The transcriptional activation and repression of light-responsive genes has been well documented; however, the impact of posttranscriptional regulation on conveying light signals has been less addressed. Here, we examined whether optimal photomorphogenesis in Arabidopsis thaliana requires the proper biogenesis of small regulatory RNAs that play pivotal roles in the posttranscriptional regulation of gene expression. Arabidopsis carrying a mutation in HUA ENHANCER1 (HEN1), required for stabilization of small regulatory RNAs, showed defects in multiple aspects of photomorphogenic and skotomorphogenic development. HEN1 negatively regulated Arabidopsis photomorphogenesis. Light-activated HEN1 expression depended on the photoreceptors phytochrome A (phyA), phyB, cryptochrome 1 (cry1), and cry2 and key transcriptional regulators ELONGATED HYPOCOTYL5 (HY5) and HY5-HOMOLOG. We also demonstrate the involvement of the small regulatory RNAs miR157d and miR319 in modulating the expression of a positive regulator, HY5, and negative regulators TEOSINTE BRANCHED1, CYCLOIDEA AND PCF family proteins, respectively, for optimal photomorphogenic development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , MicroARNs/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Criptocromos , Luz , MicroARNs/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Plantones/genética
11.
Plant Cell ; 25(10): 3699-710, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24179124

RESUMEN

Translational control plays a vital role in regulating gene expression. To decipher the molecular basis of translational regulation in photomorphogenic Arabidopsis thaliana, we adopted a ribosome profiling method to map the genome-wide positions of translating ribosomes in Arabidopsis etiolated seedlings in the dark and after light exposure. We found that, in Arabidopsis, a translating ribosome protects an ~30-nucleotide region and moves in three-nucleotide periodicity, characteristics also observed in Saccharomyces cerevisiae and mammals. Light enhanced the translation of genes involved in the organization and function of chloroplasts. Upstream open reading frames initiated by ATG but not CTG mediated translational repression of the downstream main open reading frame. Also, we observed widespread translational repression of microRNA target genes in both light- and dark-grown Arabidopsis seedlings. This genome-wide characterization of transcripts undergoing translation at the nucleotide-resolution level reveals that a combination of multiple translational mechanisms orchestrates and fine-tunes the translation of diverse transcripts in plants with environmental responsiveness.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Morfogénesis/genética , Biosíntesis de Proteínas , Ribosomas/genética , Arabidopsis/efectos de la radiación , Mapeo Cromosómico , Codón Iniciador , Biblioteca de Genes , Luz , MicroARNs/genética , Morfogénesis/efectos de la radiación , Sistemas de Lectura Abierta , ARN Mensajero/genética , ARN de Planta/genética , Análisis de Secuencia de ARN
12.
Plant Cell ; 24(10): 3997-4011, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23104829

RESUMEN

Transcriptomic adjustment plays an important role in Arabidopsis thaliana seed germination and deetiolation in response to environmental light signals. The G-box cis-element is commonly present in promoters of genes that respond positively or negatively to the light signal. In pursuing additional transcriptional regulators that modulate light-mediated transcriptome changes, we identified bZIP16, a basic region/Leu zipper motif transcription factor, by G-box DNA affinity chromatography. We confirmed that bZIP16 has G-box-specific binding activity. Analysis of bzip16 mutants revealed that bZIP16 is a negative regulator in light-mediated inhibition of cell elongation but a positive regulator in light-regulated seed germination. Transcriptome analysis supported that bZIP16 is primarily a transcriptional repressor regulating light-, gibberellic acid (GA)-, and abscisic acid (ABA)-responsive genes. Chromatin immunoprecipitation analysis revealed that bZIP16 could directly target ABA-responsive genes and RGA-like2, a DELLA gene in the GA signaling pathway. bZIP16 could also indirectly repress the expression of phytochrome interacting factoR3-like5, which encodes a basic helix-loop-helix protein coordinating hormone responses during seed germination. By repressing the expression of these genes, bZIP16 functions to promote seed germination and hypocotyl elongation during the early stages of Arabidopsis seedling development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Germinación/genética , Modelos Genéticos , Proteínas Represoras/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cromatografía de Afinidad , Oscuridad , Epistasis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Germinación/efectos de la radiación , Giberelinas/metabolismo , Proteínas Fluorescentes Verdes/análisis , Luz , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Transducción de Señal/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
RNA Biol ; 12(9): 1054-66, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26383777

RESUMEN

Plant microRNAs (miRNAs) are predominantly 21 nucleotides (nt) long but non-canonical lengths of 22 and 20 nt are commonly observed in diverse plant species. While miRNAs longer than 21 nt can be attributed to the neglect of unpaired bases within asymmetric bulges by the ruler function of dicer-like 1 (DCL1), how 20-nt miRNA is generated remains obscure. Analysis of small RNA data revealed that 20-nt miRNA can be divided into 3 main groups featured by atypical 3' overhangs or shorter duplex regions. Asymmetric bulges or mismatches at specific positions are commonly observed within each group and were shown to be crucial for 20-nt miRNA formation. Analysis of DCL1 cleavage sites on 20-nt miRNA precursors suggests that these determinants might alter precursor structure or trigger 3'-end decay of mature miRNA. The results herein advance our understanding of miRNA biogenesis and demonstrate that the effect of asymmetric bulges on miRNA length could be position-dependent.


Asunto(s)
Disparidad de Par Base , MicroARNs/química , MicroARNs/genética , Conformación de Ácido Nucleico , Plantas/genética , ARN de Planta , Emparejamiento Base , Modelos Biológicos , Ácidos Nucleicos Heterodúplex , Procesamiento Postranscripcional del ARN , Ribonucleasa III/metabolismo
14.
J Virol ; 87(12): 6888-900, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576511

RESUMEN

One striking feature of viruses with RNA genomes is the modification of the host membrane structure during early infection. This process requires both virus- and host-encoded proteins; however, the host factors involved and their role in this process remain largely unknown. On infection with Tobacco mosaic virus (TMV), a positive-strand RNA virus, the filamentous and tubular endoplasmic reticulum (ER) converts to aggregations at the early stage and returns to filamentous at the late infectious stage, termed the ER transition. Also, membrane- or vesicle-packaged viral replication complexes (VRCs) are induced early during infection. We used microarray assays to screen the Arabidopsis thaliana gene(s) responding to infection with TMV in the initial infection stage and identified an Arabidopsis gene, PAP85 (annotated as a vicilin-like seed storage protein), with upregulated expression during 0.5 to 6 h of TMV infection. TMV accumulation was reduced in pap85-RNA interference (RNAi) Arabidopsis and restored to wild-type levels when PAP85 was overexpressed in pap85-RNAi Arabidopsis. We did not observe the ER transition in TMV-infected PAP85-knockdown Arabidopsis protoplasts. In addition, TMV accumulation was reduced in PAP85-knockdown protoplasts. VRC accumulation was reduced, but not significantly (P = 0.06), in PAP85-knockdown protoplasts. Coexpression of PAP85 and the TMV main replicase (P126), but not their expression alone in Arabidopsis protoplasts, could induce ER aggregations.


Asunto(s)
Arabidopsis/virología , Interacciones Huésped-Patógeno , Proteínas de Almacenamiento de Semillas/metabolismo , Virus del Mosaico del Tabaco/fisiología , Replicación Viral , Arabidopsis/genética , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Protoplastos/metabolismo , Protoplastos/virología , Proteínas de Almacenamiento de Semillas/genética , Semillas/metabolismo , Semillas/virología , Virus del Mosaico del Tabaco/metabolismo , Virus del Mosaico del Tabaco/patogenicidad , Regulación hacia Arriba
15.
Plant Physiol ; 161(3): 1409-20, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23307650

RESUMEN

The homeostasis of iron (Fe) in plants is strictly regulated to maintain an optimal level for plant growth and development but not cause oxidative stress. About 30% of arable land is considered Fe deficient because of calcareous soil that renders Fe unavailable to plants. Under Fe-deficient conditions, Arabidopsis (Arabidopsis thaliana) shows retarded growth, disordered chloroplast development, and delayed flowering time. In this study, we explored the possible connection between Fe availability and the circadian clock in growth and development. Circadian period length in Arabidopsis was longer under Fe-deficient conditions, but the lengthened period was not regulated by the canonical Fe-deficiency signaling pathway involving nitric oxide. However, plants with impaired chloroplast function showed long circadian periods. Fe deficiency and impaired chloroplast function combined did not show additive effects on the circadian period, which suggests that plastid-to-nucleus retrograde signaling is involved in the lengthening of circadian period under Fe deficiency. Expression pattern analyses of the central oscillator genes in mutants defective in CIRCADIAN CLOCK ASSOCIATED1/LATE ELONGATED HYPOCOTYL or GIGANTEA demonstrated their requirement for Fe deficiency-induced long circadian period. In conclusion, Fe is involved in maintaining the period length of circadian rhythm, possibly by acting on specific central oscillators through a retrograde signaling pathway.


Asunto(s)
Arabidopsis/fisiología , Ritmo Circadiano/efectos de los fármacos , Hierro/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/ultraestructura , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Deficiencias de Hierro , Lincomicina/farmacología , Modelos Biológicos , Mutación/genética , Óxido Nítrico/farmacología , Piridazinas/farmacología , S-Nitrosoglutatión/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo
16.
Plant Cell ; 23(2): 486-98, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21357491

RESUMEN

In Arabidopsis thaliana, central circadian clock genes constitute several feedback loops. These interlocking loops generate an ~24-h oscillation that enables plants to anticipate the daily diurnal environment. The identification of additional clock proteins can help dissect the complex nature of the circadian clock. Previously, LIGHT-REGULATED WD1 (LWD1) and LWD2 were identified as two clock proteins regulating circadian period length and photoperiodic flowering. Here, we systematically studied the function of LWD1/2 in the Arabidopsis circadian clock. Analysis of the lwd1 lwd2 double mutant revealed that LWD1/2 plays dual functions in the light input pathway and the regulation of the central oscillator. Promoter:luciferase fusion studies showed that activities of LWD1/2 promoters are rhythmic and depend on functional PSEUDO-RESPONSE REGULATOR9 (PRR9) and PRR7. LWD1/2 is also needed for the expression of PRR9, PRR7, and PRR5. LWD1 is preferentially localized within the nucleus and associates with promoters of PRR9, PRR5, and TOC1 in vivo. Our results support the existence of a positive feedback loop within the Arabidopsis circadian clock. Further mechanistic studies of this positive feedback loop and its regulatory effects on the other clock components will further elucidate the complex nature of the Arabidopsis circadian clock.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relojes Circadianos , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Luz , Mutación , Regiones Promotoras Genéticas , ARN de Planta/genética , Factores de Transcripción/genética
17.
Genome Res ; 20(6): 826-36, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20445163

RESUMEN

Gene expression is regulated both by cis elements, which are DNA segments closely linked to the genes they regulate, and by trans factors, which are usually proteins capable of diffusing to unlinked genes. Understanding the patterns and sources of regulatory variation is crucial for understanding phenotypic and genome evolution. Here, we measure genome-wide allele-specific expression by deep sequencing to investigate the patterns of cis and trans expression variation between two strains of Saccharomyces cerevisiae. We propose a statistical modeling framework based on the binomial distribution that simultaneously addresses normalization of read counts derived from different parents and estimating the cis and trans expression variation parameters. We find that expression polymorphism in yeast is common for both cis and trans, though trans variation is more common. Constraint in expression evolution is correlated with other hallmarks of constraint, including gene essentiality, number of protein interaction partners, and constraint in amino acid substitution, indicating that both cis and trans polymorphism are clearly under purifying selection, though trans variation appears to be more sensitive to selective constraint. Comparing interspecific expression divergence between S. cerevisiae and S. paradoxus to our intraspecific variation suggests a significant departure from a neutral model of molecular evolution. A further examination of correlation between polymorphism and divergence within each category suggests that cis divergence is more frequently mediated by positive Darwinian selection than is trans divergence.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Selección Genética , ADN de Hongos/genética , Evolución Molecular , Genoma Fúngico , Polimorfismo de Nucleótido Simple
18.
Mol Syst Biol ; 8: 566, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22252389

RESUMEN

Environmental 'light' has a vital role in regulating plant growth and development. Transcriptomic profiling has been widely used to examine how light regulates mRNA levels on a genome-wide scale, but the global role of translational regulation in the response to light is unknown. Through a transcriptomic comparison of steady-state and polysome-bound mRNAs, we reveal a clear impact of translational control on thousands of genes, in addition to transcriptomic changes, during photomorphogenesis. Genes encoding ribosomal protein are preferentially regulated at the translational level, which possibly contributes to the enhanced translation efficiency. We also reveal that mRNAs regulated at the translational level share characteristics of longer half-lives and shorter cDNA length, and that transcripts with a cis-element, TAGGGTTT, in their 5' untranslated region have higher translatability. We report a previously neglected aspect of gene expression regulation during Arabidopsis photomorphogenesis. The identities and molecular signatures associated with mRNAs regulated at the translational level also offer new directions for mechanistic studies of light-triggered translational enhancement in Arabidopsis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Luz , Morfogénesis/genética , Biosíntesis de Proteínas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Secuencia de Bases , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Análisis por Micromatrices , Modelos Biológicos , Morfogénesis/efectos de la radiación , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas/efectos de la radiación , Ribosomas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Estudios de Validación como Asunto
19.
Proc Natl Acad Sci U S A ; 107(34): 15269-74, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20643946

RESUMEN

The effect of RNA silencing in plants can be amplified if the production of secondary small interfering RNAs (siRNAs) is triggered by the interaction of microRNAs (miRNAs) or siRNAs with a long target RNA. miRNA and siRNA interactions are not all equivalent, however; most of them do not trigger secondary siRNA production. Here we use bioinformatics to show that the secondary siRNA triggers are miRNAs and transacting siRNAs of 22 nt, rather than the more typical 21-nt length. Agrobacterium-mediated transient expression in Nicotiana benthamiana confirms that the siRNA-initiating miRNAs, miR173 and miR828, are effective as triggers only if expressed in a 22-nt form and, conversely, that increasing the length of miR319 from 21 to 22 nt converts it to an siRNA trigger. We also predicted and validated that the 22-nt miR771 is a secondary siRNA trigger. Our data demonstrate that the function of small RNAs is influenced by size, and that a length of 22 nt facilitates the triggering of secondary siRNA production.


Asunto(s)
Plantas/genética , Plantas/metabolismo , ARN de Planta/biosíntesis , ARN de Planta/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Silenciador del Gen , MicroARNs/biosíntesis , MicroARNs/genética , Plantas Modificadas Genéticamente , Rhizobium/genética , Homología de Secuencia de Ácido Nucleico , Nicotiana/genética , Nicotiana/metabolismo
20.
Curr Opin Plant Biol ; 76: 102454, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743123

RESUMEN

C4 photosynthesis is more efficient than C3 photosynthesis for two reasons. First, C4 plants have evolved efficient C4 enzymes to suppress wasteful photorespiration and enhance CO2 fixation. Second, C4 leaves have Kranz anatomy in which the veins are surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. The BS and M cells are functionally well differentiated and also well coordinated for rapid assimilation of atmospheric CO2 and transport of photo-assimilates between the two types of cells. Recent comparative transcriptomics of developing M and BS cells in young maize embryonic leaves revealed not only potential regulators of BS and M cell differentiation but also rapid early BS cell differentiation whereas slower, more prolonged M cell differentiation, contrary to the traditional view of a far simpler process of M cell development. Moreover, new upstream regulators of Kranz anatomy development have been identified and a number of gene co-expression modules for early vascular development have been inferred. Also, a candidate gene regulatory network associated with Kranz anatomy and vascular development has been constructed. Additionally, how whole genome duplication (WGD) may facilitate C4 evolution has been studied and the reasons for why the same WGD event led to successful C4 evolution in Gynandropsis gynandra but not in the sister species Tarenaya hassleriana have been proposed. Finally, new future research directions are suggested.


Asunto(s)
Dióxido de Carbono , Magnoliopsida , Fotosíntesis/genética , Hojas de la Planta/genética , Plantas/genética , Perfilación de la Expresión Génica , Magnoliopsida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA