Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Am Chem Soc ; 142(1): 448-455, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31825602

RESUMEN

Although the gelation process and lower critical solution temperature (LCST) behavior are well acknowledged in polymer systems, low-molecular-weight gelators (LMWGs) rarely display LCST behavior during supramolecular gelation. Herein, we report an LMWG system with LCST-type thermoresponsiveness and an LCST-triggered supramolecular gelation process. Temperature plays a crucial role in this system, not only affecting the LCST phase separation but also triggering the gelation process. The backbones (three-dimensional structures) of the resulting hydrogel are the hierarchical assemblies of the LMWG undergoing the LCST phase separation. Hence, the gelation of the LMWG is only realized when the gelation temperature is above the critical transition temperature (Tcloud) of the LCST behavior, which is different from many supramolecular or polymeric hydrogel systems.

2.
Angew Chem Int Ed Engl ; 59(29): 11871-11875, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32291882

RESUMEN

Application of new strategies for supramolecular self-assembly can significantly impact the properties and/or functions of supramolecular polymers. To realize a facial strategy for the development of solvent-free supramolecular polymers in bulk, "deep eutectic solvents" were employed. Cyclodextrins and natural acids were used to prepare deep eutectic supramolecular polymers (DESPs). Deep eutectic solvents have special characteristics that endow DESPs with unique macroscopic properties and excellent processability. DESPs exhibit supramolecular adhesion and temperature-dependent behavior originating from the combined effects of deep eutectic solvents and supramolecular polymerization. Because DESPs are solvent-free and display interesting macroscopic properties, they have potential as new adaptive materials.

4.
Nat Commun ; 15(1): 3929, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724556

RESUMEN

Supramolecular glass is a non-covalently cross-linked amorphous material that exhibits excellent optical properties and unique intrinsic structural features. Compared with artificial inorganic/organic glass, which has been extensively developed, supramolecular glass is still in the infancy stage, and itself is rarely recognized and studied thus far. Herein, we present the development of the host-guest molecular recognition motifs between methyl-ß-cyclodextrin and para-hydroxybenzoic acid as the building blocks of supramolecular glass. Non-covalent polymerization resulting from the host-guest complexation and hydrogen bonding formation enables high transparency and bulk state to supramolecular glass. Various advantages, including recyclability, compatibility, and thermal processability, are associated with dynamic assembly pattern. Short-range order (host-guest complexation) and long-range disorder (three dimensional polymeric network) structures are identified simultaneously, thus demonstrating the typical structural characteristics of glass. This work provides a supramolecular strategy for constructing transparent materials from organic components.

5.
Mater Horiz ; 10(11): 5152-5160, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37700633

RESUMEN

Understanding the nature of glass is one of the most important challenges in chemistry, physics, and materials science. In this study, transparent bulk supramolecular glasses with excellent optical behaviors and good mechanical properties were fabricated via the non-covalent polymerization of nucleosides. Hydrogen bonding is the main driving force in the formation of bulk supramolecular glasses. The directional and saturated character of hydrogen bonding enables the formation of a short-range ordered structure, while the weak nature and reversibility of hydrogen bonds allow for the asymmetric and random connections of the short-range ordered structure into a long-range disordered network. Various relaxations, including ß, γ, and δ relaxations, are observed at temperatures below the glass transition temperature, demonstrating the metastable nature of bulk supramolecular glasses. This investigation offers supramolecular insights into the nature of glass materials.

6.
Adv Sci (Weinh) ; 9(33): e2203630, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220340

RESUMEN

Inspired by the bottom-up assembly in nature, an artificial self-assembly pattern is introduced into 3D-fused deposition modeling (FDM) printing to achieve additive manufacturing on the macroscopic scale. Thermally activated polymerization of thioctic acid (TA) enabled the bulk construction of poly(TA), and yielded unique time-dependent self-assembly. Freshly prepared poly(TA) can spontaneously and continuously transfer into higher-molecular-weight species and low-molecular-weight TA monomers. Poly(TA) and the newly formed TA further assembled into self-reinforcing materials via microscopic-phase separation. Bottom-up self-assembly patterns on different scales are fully realized by 3D FDM printing of poly(TA): thermally induced polymerization of TA (microscopic-scale assembly) to poly(TA) and 3D printing (macroscopic-scale assembly) of poly(TA) are simultaneously achieved in the 3D-printing process; after 3D printing, the poly(TA) modes show mechanically enhanced features over time, arising from the microscopic self-assembly of poly(TA) and TA. This study clearly demonstrates that micro- and macroscopic bottom-up self-assembly can be applied in 3D additive manufacturing.


Asunto(s)
Ácido Tióctico , Impresión Tridimensional
7.
Mater Horiz ; 9(7): 1984-1991, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35604069

RESUMEN

Underwater labeling under complicated conditions is challenging for modern adhesive materials. In this work, a series of supramolecular polymer adhesives were successfully prepared via the non-covalent copolymerization of low-molecular-weight monomers (thioctic acid (TA) and tetraphenylethene derivatives (TPEs)). Strong adhesion effects were observed under various conditions. The poly(TA-TPE)s showed long-term stability in underwater labeling. Due to the aggregation-induced emission (AIE) behavior of TPEs, poly(TA-TPE)s showed great potential as fluorescent labeling materials in water. Complicated and cryptographic information can be stored in labeling structures, and analyzed under ultraviolet (UV) irradiation. Supramolecular labeling showed excellent distinguishability in complex backgrounds. Meanwhile, fluorescent adhesives exhibited a number of advantages over visible colored labels.


Asunto(s)
Adhesivos , Luminiscencia , Colorantes , Polimerizacion
8.
Chem Commun (Camb) ; 57(98): 13317-13320, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34812444

RESUMEN

Pillar[n]arenes were rarely used as the building blocks for supramolecular adhesives. Herein, pillar[5]arene-based supramolecular polymer materials with tough adhesion behaviours on different substrates were prepared, with adhesion strengths up to 4.75 MPa. Strong and long-term dichloromethane-resistant adhesion performances were successfully obtained.

9.
ACS Appl Mater Interfaces ; 13(44): 53083-53090, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34711056

RESUMEN

A series of poly(thioctic acid-catechol)s was prepared by supramolecular copolymerization of two low-molecular-weight monomers, thioctic acid (TA) and catechol (CA). The addition of a small amount of CA molecules significantly improved the adhesion ability of poly(TA) and transformed it into an applicable supramolecular polymer adhesive material. The robust adhesion of poly(TA-CA)s to soft surfaces was achieved by employing a hot-melt method. However, the supramolecular adhesion via the hot-melt method failed to perform in the presence of water. On-site supramolecular adhesion to wet and soft substrates was successfully realized through the solvent exchange behavior between water and the poly(TA-CA)s ethanol solution. Compared to the hot-melt method, the solvent exchange method displays various fascinating advantages and is suitable for adhesion conditions normally under the presence of water.

10.
RSC Adv ; 9(18): 10100-10108, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35520906

RESUMEN

Amino acid-based ionic liquids (AAILs) are generally thought of as green solvents and widely used in many regions without systematic assessment of their effect on the environment or human health. In this work, a series of AAILs with different cations and amino acid anions were prepared and characterized, after which their microbial toxicity, phytotoxicity, and biodegradability were evaluated. The results showed that not all AAILs had low toxicity against microorganisms and that some AAILs were highly toxic towards the targeted microorganisms. The phytotoxic effect of the AAILs on rice (Oryza sativa L.) further demonstrated that AAILs should not be presumed to be non-toxic to plants. Moreover, the biodegradability tests showed that majority of AAILs were not satisfactorily biodegradable. In summary, not all AAILs are non-toxic or biodegradable, and their effect on the environment and human health must be assessed before their mass preparation and application.

11.
J Hazard Mater ; 348: 1-9, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29353137

RESUMEN

Cytotoxicity studies are important tools for the assessment of the toxicity of ionic liquids (ILs). In the present study, the cytotoxicity of eleven ILs against Spodoptera frugiperda 9 (Sf-9) cell lines were evaluated via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The effect on cellular morphology, ultrastructural morphology, and nuclear morphology induced by 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]) was studied via inverted light microscopy observation, acridine orange staining, and transmission electron microscope (TEM) analysis, respectively. The effect on cell DNA fragmentation, cell apoptosis and cell cycle induced by [C2mim][Br] was also investigated via DNA agarose gel electrophoresis and flow cytometry analysis, respectively. The results showed that the cytotoxic effect of ILs on Sf-9 cells was related to the IL structures, concentrations, and length of exposure. The morphological features of apoptosis induced by [C2mim][Br] such as cell shrinkage and convolution, apoptotic bodies, pyknosis, and karyorrhesis were observed. All these phenomena confirmed that Sf-9 cells exposed to [C2mim][Br] died via apoptosis. This study complements the current knowledge about the cytotoxic properties of ILs on insect cells and highlights the mechanism by which ILs kill these cells. Furthermore, it provides a basis for further studies on the future applications of ILs as insecticides.


Asunto(s)
Líquidos Iónicos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Spodoptera
12.
Food Chem ; 217: 91-97, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27664612

RESUMEN

Salting-out extraction (SOE) based on lower molecular organic solvent and inorganic salt was considered as a good substitute for conventional polymers aqueous two-phase extraction (ATPE) used for the extraction of some bioactive compounds from natural plants resources. In this study, the ethanol/ammonium sulfate was screened as the optimal SOE system for the extraction and preliminary purification of allicin from garlic. Response surface methodology (RSM) was developed to optimize the major conditions. The maximum extraction efficiency of 94.17% was obtained at the optimized conditions for routine use: 23% (w/w) ethanol concentration and 24% (w/w) salt concentration, 31g/L loaded sample at 25°C with pH being not adjusted. The extraction efficiency had no obvious decrease after amplification of the extraction. This ethanol/ammonium sulfate SOE is much simpler, cheaper, and effective, which has the potentiality of scale-up production for the extraction and purification of other compounds from plant resources.


Asunto(s)
Sulfato de Amonio/química , Etanol/química , Ajo , Cloruro de Sodio/química , Ácidos Sulfínicos/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Disulfuros , Ajo/química , Extractos Vegetales/aislamiento & purificación , Solventes/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA