RESUMEN
Many COVID-19 patients infected by SARS-CoV-2 virus develop pneumonia (called novel coronavirus pneumonia, NCP) and rapidly progress to respiratory failure. However, rapid diagnosis and identification of high-risk patients for early intervention are challenging. Using a large computed tomography (CT) database from 3,777 patients, we developed an AI system that can diagnose NCP and differentiate it from other common pneumonia and normal controls. The AI system can assist radiologists and physicians in performing a quick diagnosis especially when the health system is overloaded. Significantly, our AI system identified important clinical markers that correlated with the NCP lesion properties. Together with the clinical data, our AI system was able to provide accurate clinical prognosis that can aid clinicians to consider appropriate early clinical management and allocate resources appropriately. We have made this AI system available globally to assist the clinicians to combat COVID-19.
Asunto(s)
Inteligencia Artificial , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Tomografía Computarizada por Rayos X , COVID-19 , China , Estudios de Cohortes , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Conjuntos de Datos como Asunto , Humanos , Pulmón/patología , Modelos Biológicos , Pandemias , Proyectos Piloto , Neumonía Viral/patología , Neumonía Viral/terapia , Pronóstico , Radiólogos , Insuficiencia Respiratoria/diagnósticoRESUMEN
Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.
Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Adenina/análisis , Adenina/química , Adulto , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/antagonistas & inhibidores , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Hipoxia de la Célula , Niño , Epigenómica , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Piperazinas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Quinazolinas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Mutación , Piperazinas/química , Piperazinas/uso terapéutico , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinazolinas/química , Quinazolinas/uso terapéuticoRESUMEN
The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.
RESUMEN
Establishing the connection between cell fate and fate-related genes in a single progenitor cell is a challenge. In this issue of Immunity, Tian et al. tackled this challenge by designing SIS-seq and SIS-Skew assays and identified Bcor as a negative regulator for dendritic cell differentiation.
Asunto(s)
Células Madre , Factores de Transcripción , Diferenciación Celular , Células DendríticasRESUMEN
Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.
Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular , Ciclo Celular , Ácido Láctico , Humanos , Anafase , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , MitosisRESUMEN
The discovery of several electronic orders in kagome superconductors AV3Sb5 (A means K, Rb, Cs) provides a promising platform for exploring unprecedented emergent physics1-9. Under moderate pressure (<2.2 GPa), the triple-Q charge density wave (CDW) order is monotonically suppressed by pressure, while the superconductivity shows a two-dome-like behaviour, suggesting an unusual interplay between superconductivity and CDW order10,11. Given that time-reversal symmetry breaking and electronic nematicity have been revealed inside the triple-Q CDW phase8,9,12,13, understanding this CDW order and its interplay with superconductivity becomes one of the core questions in AV3Sb5 (refs. 3,5,6). Here, we report the evolution of CDW and superconductivity with pressure in CsV3Sb5 by 51V nuclear magnetic resonance measurements. An emergent CDW phase, ascribed to a possible stripe-like CDW order with a unidirectional 4a0 modulation, is observed between Pc1 â 0.58 GPa and Pc2 â 2.0 GPa, which explains the two-dome-like superconducting behaviour under pressure. Furthermore, the nuclear spin-lattice relaxation measurement reveals evidence for pressure-independent charge fluctuations above the CDW transition temperature and unconventional superconducting pairing above Pc2. Our results not only shed new light on the interplay of superconductivity and CDW, but also reveal new electronic correlation effects in kagome superconductors AV3Sb5.
RESUMEN
Electronic nematicity, in which rotational symmetry is spontaneously broken by electronic degrees of freedom, has been demonstrated as a ubiquitous phenomenon in correlated quantum fluids including high-temperature superconductors and quantum Hall systems1,2. Notably, the electronic nematicity in high-temperature superconductors exhibits an intriguing entanglement with superconductivity, generating complicated superconducting pairing and intertwined electronic orders. Recently, an unusual competition between superconductivity and a charge-density-wave (CDW) order has been found in the AV3Sb5 (A = K, Rb, Cs) family with two-dimensional vanadium kagome nets3-8. Whether these phenomena involve electronic nematicity is still unknown. Here we report evidence for the existence of electronic nematicity in CsV3Sb5, using a combination of elastoresistance measurements, nuclear magnetic resonance (NMR) and scanning tunnelling microscopy/spectroscopy (STM/S). The temperature-dependent elastoresistance coefficient (m11 minus m12) and NMR spectra demonstrate that, besides a C2 structural distortion of the 2a0 × 2a0 supercell owing to out-of-plane modulation, considerable nematic fluctuations emerge immediately below the CDW transition (approximately 94 kelvin) and finally a nematic transition occurs below about 35 kelvin. The STM experiment directly visualizes the C2-structure-pinned long-range nematic order below the nematic transition temperature, suggesting a novel nematicity described by a three-state Potts model. Our findings indicate an intrinsic electronic nematicity in the normal state of CsV3Sb5, which sets a new paradigm for revealing the role of electronic nematicity on pairing mechanism in unconventional superconductors.
RESUMEN
von Hippel-Lindau (VHL) is a critical tumor suppressor in clear cell renal cell carcinomas (ccRCCs). It is important to identify additional therapeutic targets in ccRCC downstream of VHL loss besides hypoxia-inducible factor 2α (HIF2α). By performing a genome-wide screen, we identified Scm-like with four malignant brain tumor domains 1 (SFMBT1) as a candidate pVHL target. SFMBT1 was considered to be a transcriptional repressor but its role in cancer remains unclear. ccRCC patients with VHL loss-of-function mutations displayed elevated SFMBT1 protein levels. SFMBT1 hydroxylation on Proline residue 651 by EglN1 mediated its ubiquitination and degradation governed by pVHL. Depletion of SFMBT1 abolished ccRCC cell proliferation in vitro and inhibited orthotopic tumor growth in vivo. Integrated analyses of ChIP-seq, RNA-seq, and patient prognosis identified sphingosine kinase 1 (SPHK1) as a key SFMBT1 target gene contributing to its oncogenic phenotype. Therefore, the pVHL-SFMBT1-SPHK1 axis serves as a potential therapeutic avenue for ccRCC.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Represoras/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Ciclo Celular , Movimiento Celular , Proliferación Celular , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Pronóstico , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/metabolismo , Proteínas Represoras/genética , Células Tumorales Cultivadas , Ubiquitinación , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Fruit length is a key domestication trait that affects crop yield and appearance. Cucumber (Cucumis sativus) fruits vary from 5 to 60 cm in length. Despite the identification of several regulators and multiple quantitative trait loci (QTLs) underlying fruit length, the natural variation, and molecular mechanisms underlying differences in fruit length are poorly understood. Through map-based cloning, we identified a nonsynonymous polymorphism (G to A) in CRABS CLAW (CsCRC) as underlying the major-effect fruit size/shape QTL FS5.2 in cucumber. The short-fruit allele CsCRCA is a rare allele that has only been found in round-fruited semi-wild Xishuangbanna cucumbers. A near-isogenic line (NIL) homozygous for CsCRCA exhibited a 34â¼39% reduction in fruit length. Introducing CsCRCG into this NIL rescued the short-fruit phenotype, and knockdown of CsCRCG resulted in shorter fruit and smaller cells. In natural cucumber populations, CsCRCG expression was positively correlated with fruit length. Further, CsCRCG, but not CsCRCA, targets the downstream auxin-responsive protein gene CsARP1 to regulate its expression. Knockout of CsARP1 produced shorter fruit with smaller cells. Hence, our work suggests that CsCRCG positively regulates fruit elongation through transcriptional activation of CsARP1 and thus enhances cell expansion. Using different CsCRC alleles provides a strategy to manipulate fruit length in cucumber breeding.
Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Mapeo Cromosómico , Frutas/genética , Sitios de Carácter Cuantitativo/genética , FenotipoRESUMEN
The recent discovery of N6-methyladenine (N6-mA) in mammalian genomes suggests that it may serve as an epigenetic regulatory mechanism1. However, the biological role of N6-mA and the molecular pathways that exert its function remain unclear. Here we show that N6-mA has a key role in changing the epigenetic landscape during cell fate transitions in early development. We found that N6-mA is upregulated during the development of mouse trophoblast stem cells, specifically at regions of stress-induced DNA double helix destabilization (SIDD)2-4. Regions of SIDD are conducive to topological stress-induced unpairing of the double helix and have critical roles in organizing large-scale chromatin structures3,5,6. We show that the presence of N6-mA reduces the in vitro interactions by more than 500-fold between SIDD and SATB1, a crucial chromatin organizer that interacts with SIDD regions. Deposition of N6-mA also antagonizes SATB1 function in vivo by preventing its binding to chromatin. Concordantly, N6-mA functions at the boundaries between euchromatin and heterochromatin to restrict the spread of euchromatin. Repression of SIDD-SATB1 interactions mediated by N6-mA is essential for gene regulation during trophoblast development in cell culture models and in vivo. Overall, our findings demonstrate an unexpected molecular mechanism for N6-mA function via SATB1, and reveal connections between DNA modification, DNA secondary structures and large chromatin domains in early embryonic development.
Asunto(s)
Adenina/análogos & derivados , ADN/química , ADN/metabolismo , Desarrollo Embrionario , Proteínas de Unión a la Región de Fijación a la Matriz/antagonistas & inhibidores , Adenina/metabolismo , Animales , Emparejamiento Base , Desarrollo Embrionario/genética , Eucromatina/genética , Eucromatina/metabolismo , Femenino , Humanos , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Células Madre/citología , Células Madre/metabolismo , Termodinámica , Trofoblastos/citologíaRESUMEN
BACKGROUND: Cadonilimab is a bispecific antibody targeting PD-1 and CTLA-4, which has shown substantial clinical benefits in advanced cervical cancer. In the COMPASSION-16 trial, we aimed to evaluate the addition of cadonilimab to first-line standard chemotherapy in persistent, recurrent, or metastatic cervical cancer. METHODS: In this randomised, double-blind, multicentre, placebo-controlled phase 3 trial, women aged 18-75 years across 59 clinical sites in China with previously untreated persistent, recurrent, or metastatic cervical cancer were randomly assigned (1:1) to receive cadonilimab (10 mg/kg) or placebo plus platinum-based chemotherapy with or without bevacizumab every 3 weeks for six cycles, followed by maintenance therapy every 3 weeks for up to 2 years. Randomisation was performed centrally through an interactive web-response system. Stratification factors were the use of bevacizumab (yes or no) and previous concurrent chemoradiotherapy (yes or no). The dual primary outcomes were progression-free survival as assessed by blinded independent central review and overall survival in the full analysis set. This study is registered with ClinicalTrials.gov, NCT04982237; the study has completed enrolment and is ongoing for treatment and follow-up. FINDINGS: 445 eligible women were enrolled between Sept 11, 2021, and June 23, 2022. Median progression-free survival was 12·7 months (95% CI 11·6-16·1) in the cadonilimab group and 8·1 months (7·7-9·6) in the placebo group (hazard ratio 0·62 [95% CI 0·49-0·80], p<0·0001); median overall survival was not reached (27·0 months to not estimable) versus 22·8 months (17·6-29·0), respectively (hazard ratio 0·64 [0·48-0·86], p=0·0011). The most common grade 3 or higher adverse events were decreased neutrophil count, decreased white blood cell count, and anaemia. INTERPRETATION: The addition of cadonilimab to first-line standard chemotherapy significantly improved progression-free survival and overall survival with a manageable safety profile in participants with persistent, recurrent, or metastatic cervical cancer. The data support the use of cadonilimab plus chemotherapy as an efficacious first-line therapy in persistent, recurrent, or metastatic cervical cancer. FUNDING: Akeso Biopharma.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab , Recurrencia Local de Neoplasia , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Persona de Mediana Edad , Bevacizumab/uso terapéutico , Bevacizumab/administración & dosificación , Método Doble Ciego , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Adulto , China , Recurrencia Local de Neoplasia/tratamiento farmacológico , Anciano , Adulto Joven , Adolescente , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Supervivencia sin ProgresiónRESUMEN
Exosomes cargo tumour-characterized biomolecules secreted from cancer cells and play a pivotal role in tumorigenesis and cancer progression, thus providing their potential for non-invasive cancer monitoring. Since cancer cell-derived exosomes are often mixed with those from healthy cells in liquid biopsy of tumour patients, accurately measuring the purity of tumour cell-derived exosomes is not only critical for the early detection but also essential for unbiased identification of diagnosis biomarkers. Here, we propose 'ExosomePurity', a tumour purity deconvolution model to estimate tumour purity in serum exosomes of cancer patients based on microribonucleic acid (miRNA)-Seq data. We first identify the differently expressed miRNAs as signature to distinguish cancer cell- from healthy cell-derived exosomes. Then, the deconvolution model was developed to estimate the proportions of cancer exosomes and normal exosomes in serum. The purity predicted by the model shows high correlation with actual purity in simulated data and actual data. Moreover, the model is robust under the different levels of noise background. The tumour purity was also used to correct differential expressed gene analysis. ExosomePurity empowers the research community to study non-invasive early diagnosis and to track cancer progression in cancers more efficiently. It is implemented in R and is freely available from GitHub (https://github.com/WangHYLab/ExosomePurity).
Asunto(s)
Exosomas , MicroARNs , Neoplasias , Humanos , Exosomas/genética , Biomarcadores de Tumor/genética , MicroARNs/genética , Neoplasias/genética , Biopsia LíquidaRESUMEN
Copy number alterations (CNAs) are a predominant source of genetic alterations in human cancer and play an important role in cancer progression. However comprehensive understanding of the mutational processes and signatures of CNA is still lacking. Here we developed a mechanism-agnostic method to categorize CNA based on various fragment properties, which reflect the consequences of mutagenic processes and can be extracted from different types of data, including whole genome sequencing (WGS) and single nucleotide polymorphism (SNP) array. The 14 signatures of CNA have been extracted from 2778 pan-cancer analysis of whole genomes WGS samples, and further validated with 10 851 the cancer genome atlas SNP array dataset. Novel patterns of CNA have been revealed through this study. The activities of some CNA signatures consistently predict cancer patients' prognosis. This study provides a repertoire for understanding the signatures of CNA in cancer, with potential implications for cancer prognosis, evolution and etiology.
Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Neoplasias/genética , Genoma , Mutación , Secuenciación Completa del GenomaRESUMEN
Major histocompatibility complex (MHC) class II molecules play a pivotal role in antigen presentation and CD4+ T cell response. Accurate prediction of the immunogenicity of MHC class II-associated antigens is critical for vaccine design and cancer immunotherapies. However, current computational methods are limited by insufficient training data and algorithmic constraints, and the rules that govern which peptides are truly recognized by existing T cell receptors remain poorly understood. Here, we build a transfer learning-based, long short-term memory model named 'TLimmuno2' to predict whether epitope-MHC class II complex can elicit T cell response. Through leveraging binding affinity data, TLimmuno2 shows superior performance compared with existing models on independent validation datasets. TLimmuno2 can find real immunogenic neoantigen in real-world cancer immunotherapy data. The identification of significant MHC class II neoantigen-mediated immunoediting signal in the cancer genome atlas pan-cancer dataset further suggests the robustness of TLimmuno2 in identifying really immunogenic neoantigens that are undergoing negative selection during cancer evolution. Overall, TLimmuno2 is a powerful tool for the immunogenicity prediction of MHC class II presented epitopes and could promote the development of personalized immunotherapies.
Asunto(s)
Antígenos de Histocompatibilidad Clase II , Neoplasias , Humanos , Antígenos HLA , Presentación de Antígeno , Aprendizaje AutomáticoRESUMEN
Recent developments of deep learning methods have demonstrated their feasibility in liver malignancy diagnosis using ultrasound (US) images. However, most of these methods require manual selection and annotation of US images by radiologists, which limit their practical application. On the other hand, US videos provide more comprehensive morphological information about liver masses and their relationships with surrounding structures than US images, potentially leading to a more accurate diagnosis. Here, we developed a fully automated artificial intelligence (AI) pipeline to imitate the workflow of radiologists for detecting liver masses and diagnosing liver malignancy. In this pipeline, we designed an automated mass-guided strategy that used segmentation information to direct diagnostic models to focus on liver masses, thus increasing diagnostic accuracy. The diagnostic models based on US videos utilized bi-directional convolutional long short-term memory modules with an attention-boosted module to learn and fuse spatiotemporal information from consecutive video frames. Using a large-scale dataset of 50 063 US images and video frames from 11 468 patients, we developed and tested the AI pipeline and investigated its applications. A dataset of annotated US images is available at https://doi.org/10.5281/zenodo.7272660.
Asunto(s)
Inteligencia Artificial , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Flujo de TrabajoRESUMEN
The fruit neck is an important agronomic trait of cucumber (Cucumis sativus). However, the underlying genes and regulatory mechanisms involved in fruit neck development are poorly understood. We previously identified a cucumber yellow-green peel (ygp) mutant, whose causal gene is MYB DOMAIN PROTEIN 36 (CsMYB36). This study showed that the ygp mutant exhibited a shortened fruit neck and repressed cell expansion in the fruit neck. Further functional analysis showed that CsMYB36 was also a target gene, and its expression was enriched in the fruit neck. Overexpression of CsMYB36 in the ygp mutant rescued shortened fruit necks. Furthermore, transcriptome analysis and reverse transcription quantitative PCR (RT-qPCR) assays revealed that CsMYB36 positively regulates the expression of an expansin-like A3 (CsEXLA3) in the fruit neck, which is essential for cell expansion. Yeast 1-hybrid and dual-luciferase assays revealed that CsMYB36 regulates fruit neck elongation by directly binding to the promoter of CsEXLA3. Collectively, these findings demonstrate that CsMYB36 is an important gene in the regulation of fruit neck length in cucumber plants.
Asunto(s)
Cucumis sativus , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
MutL homolog 1 (MLH1), a member of the MutL homolog family, is required for normal recombination in most organisms. However, its role in soybean (Glycine max) remains unclear to date. Here, we characterized the Glycine max female and male sterility 1 (Gmfms1) mutation that reduces pollen grain viability and increases embryo sac abortion in soybean. Map-based cloning revealed that the causal gene of Gmfms1 is Glycine max MutL homolog 1 (GmMLH1), and CRISPR/Cas9 knockout approach further validated that disruption of GmMLH1 confers the female-male sterility phenotype in soybean. Loss of GmMLH1 function disrupted bivalent formation, leading to univalent mis-segregation during meiosis and ultimately to female-male sterility. The Gmmlh1 mutant showed about a 78.16% decrease in meiotic crossover frequency compared to the wild type. The residual chiasmata followed a Poisson distribution, suggesting that interference-sensitive crossover formation was affected in the Gmmlh1 mutant. Furthermore, GmMLH1 could interact with GmMLH3A and GmMLH3B both in vivo and in vitro. Overall, our work demonstrates that GmMLH1 participates in interference-sensitive crossover formation in soybean, and provides additional information about the conserved functions of MLH1 across plant species.
Asunto(s)
Intercambio Genético , Glycine max , Meiosis , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Meiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Infertilidad Vegetal/genética , Mutación/genética , Polen/genética , Polen/crecimiento & desarrolloRESUMEN
AIMS: With the wide application of trastuzumab deruxtecan (T-DXd), the survival of HER2-low breast cancer patients is dramatically improved. However, resistance to T-DXd still exists in a subset of patients, and the molecular mechanism remains unclear. METHODS: An in vivo shRNA lentiviral library functional screening was performed to identify potential circular RNA (crRNA) that mediates T-DXd resistance. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate the molecular mechanism. Ferroptosis was detected using C11-BODIPY, Liperfluo, FerroOrange staining, glutathione quantification, malondialdehyde quantification, and transmission electron microscopy. Molecular docking, virtual screening, and patient-derived xenograft (PDX) models were used to validate therapeutic agents. RESULTS: VDAC3-derived crRNA (crVDAC3) ranked first in functional shRNA library screening. Knockdown of crVDAC3 increased the sensitivity of HER2-low breast cancer cells to T-DXd treatment. Further mechanistic research revealed that crVDAC3 specifically binds to HSPB1 protein and inhibits its ubiquitination degradation, leading to intracellular accumulation and increased levels of HSPB1 protein. Notably, suppression of crVDAC3 dramatically increases excessive ROS levels and labile iron pool accumulation. Inhibition of crVDAC3 induces ferroptosis in breast cancer cells by reducing HSPB1 expression, thereby mediating T-DXd resistance. Through virtual screening and experimental validation, we identified that paritaprevir could effectively bind to crVDAC3 and prevent its interaction with HSPB1 protein, thereby increasing ubiquitination degradation of HSPB1 protein to overcome T-DXd resistance. Finally, we validated the enhanced therapeutic efficacy of T-DXd by paritaprevir in a HER2-low PDX model. CONCLUSION: This finding reveals the molecular mechanisms underlying T-DXd resistance in HER2-low breast cancer. Our study provides a new strategy to overcome T-DXd resistance by inhibiting the interaction between crVDAC3 and HSPB1 protein.