Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 605(7909): 357-365, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508654

RESUMEN

The entry of mammalian cells into the DNA synthesis phase (S phase) represents a key event in cell division1. According to current models of the cell cycle, the kinase CDC7 constitutes an essential and rate-limiting trigger of DNA replication, acting together with the cyclin-dependent kinase CDK2. Here we show that CDC7 is dispensable for cell division of many different cell types, as determined using chemical genetic systems that enable acute shutdown of CDC7 in cultured cells and in live mice. We demonstrate that another cell cycle kinase, CDK1, is also active during G1/S transition both in cycling cells and in cells exiting quiescence. We show that CDC7 and CDK1 perform functionally redundant roles during G1/S transition, and at least one of these kinases must be present to allow S-phase entry. These observations revise our understanding of cell cycle progression by demonstrating that CDK1 physiologically regulates two distinct transitions during cell division cycle, whereas CDC7 has a redundant function in DNA replication.


Asunto(s)
Proteínas de Ciclo Celular , Fase G1 , Proteínas Serina-Treonina Quinasas , Proteolisis , Fase S , Animales , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo
2.
Genes Dev ; 31(5): 511-523, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28360182

RESUMEN

To understand mammalian active DNA demethylation, various methods have been developed to map the genomic distribution of the demethylation intermediates 5-formylcysotine (5fC) and 5-carboxylcytosine (5caC). However, the majority of these methods requires a large number of cells to begin with. In this study, we describe low-input methylase-assisted bisulfite sequencing (liMAB-seq ) and single-cell MAB-seq (scMAB-seq), capable of profiling 5fC and 5caC at genome scale using ∼100 cells and single cells, respectively. liMAB-seq analysis of preimplantation embryos reveals the oxidation of 5mC to 5fC/5caC and the positive correlation between chromatin accessibility and processivity of ten-eleven translocation (TET) enzymes. scMAB-seq captures the cell-to-cell heterogeneity of 5fC and 5caC and reveals the strand-biased distribution of 5fC and 5caC. scMAB-seq also allows the simultaneous high-resolution mapping of sister chromatid exchange (SCE), facilitating the study of this type of genomic rearrangement. Therefore, our study not only establishes new methods for the genomic mapping of active DNA demethylation using limited numbers of cells or single cells but also demonstrates the utilities of the methods in different biological contexts.


Asunto(s)
Mapeo Cromosómico/métodos , Metilación de ADN , Genómica/métodos , Análisis de la Célula Individual/métodos , Intercambio de Cromátides Hermanas , Animales , Blastómeros/metabolismo , Replicación del ADN , Embrión de Mamíferos , Ratones
3.
Nat Rev Genet ; 18(9): 517-534, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28555658

RESUMEN

In mammals, DNA methylation in the form of 5-methylcytosine (5mC) can be actively reversed to unmodified cytosine (C) through TET dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair. In the past few years, biochemical and structural studies have revealed mechanistic insights into how TET and TDG mediate active DNA demethylation. Additionally, many regulatory mechanisms of this process have been identified. Technological advances in mapping and tracing the oxidized forms of 5mC allow further dissection of their functions. Furthermore, the biological functions of active DNA demethylation in various biological contexts have also been revealed. In this Review, we summarize the recent advances and highlight key unanswered questions.


Asunto(s)
Metilación de ADN , Dioxigenasas/metabolismo , 5-Metilcitosina/metabolismo , Animales , Dioxigenasas/química , Dioxigenasas/genética , Regulación de la Expresión Génica , Humanos , Redes y Vías Metabólicas
4.
Proc Natl Acad Sci U S A ; 111(2): E255-64, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379357

RESUMEN

Bacterial chemotaxis proteins are organized into ordered arrays. In peritrichous organisms, such as Escherichia coli, stochastic assembly processes are thought to account for the placement of chemotaxis arrays, which are nonuniformly distributed. In contrast, we previously found that chemotactic signaling arrays in polarly flagellated vibrios are uniformly polar and that array localization is dependent on the ParA-like ATPase ParC. However, the processes that enable ParC to facilitate array localization have not been described. Here, we show that a previously uncharacterized protein, ParP, interacts with ParC and that ParP is integral to array localization in Vibrio parahaemolyticus. ParC's principal contribution to chemotaxis appears to be via positioning of ParP. Once recruited to the pole by ParC, ParP sequesters arrays at this site by capturing and preventing the dissociation of chemotactic signaling protein (CheA). Notably, ParP also stabilizes chemotactic protein complexes in the absence of ParC, indicating that some of its activity is independent of this interaction partner. ParP recruits CheA via CheA's localization and inheritance domain, a region found only in polarly flagellated organisms that encode ParP, ParC, and CheA. Thus, a tripartite (ParC-ParP-CheA) interaction network enables the polar localization and sequestration of chemotaxis arrays in polarly flagellated organisms. Localization and sequestration of chemotaxis clusters adjacent to the flagella--to which the chemotactic signal is transmitted--facilitates proper chemotaxis as well as accurate inheritance of these macromolecular machines.


Asunto(s)
Proteínas Bacterianas/fisiología , Polaridad Celular/fisiología , Quimiotaxis/fisiología , Transducción de Señal/fisiología , Vibrio parahaemolyticus/genética , Agar , Proteínas Bacterianas/metabolismo , Biología Computacional , Topoisomerasa de ADN IV/metabolismo , Escherichia coli , Proteínas de Escherichia coli , Recuperación de Fluorescencia tras Fotoblanqueo , Histidina Quinasa , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Microscopía Fluorescente , Imagen de Lapso de Tiempo , Vibrio cholerae , Vibrio parahaemolyticus/metabolismo
5.
Nat Cell Biol ; 21(7): 835-844, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209294

RESUMEN

Totipotency refers to the ability of a cell to generate all of the cell types of an organism. Unlike pluripotency, the establishment of totipotency is poorly understood. In mouse embryonic stem cells, Dux drives a small percentage of cells into a totipotent state by expressing 2-cell-embryo-specific transcripts. To understand how this transition takes place, we performed single-cell RNA-seq, which revealed a two-step transcriptional reprogramming process characterized by downregulation of pluripotent genes in the first step and upregulation of the 2-cell-embryo-specific elements in the second step. To identify factors controlling the transition, we performed a CRISPR-Cas9-mediated screen, which revealed Myc and Dnmt1 as two factors preventing the transition. Mechanistic studies demonstrate that Myc prevents downregulation of pluripotent genes in the first step, while Dnmt1 impedes 2-cell-embryo-specific gene activation in the second step. Collectively, the findings of our study reveal insights into the establishment and regulation of the totipotent state in mouse embryonic stem cells.


Asunto(s)
Reprogramación Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Células Madre Embrionarias/metabolismo , Genes myc/genética , Animales , Diferenciación Celular/genética , Epigénesis Genética/genética , Ratones , Células Madre Embrionarias de Ratones , Células Madre Pluripotentes/citología , Células Madre Totipotentes/citología
6.
Cell Stem Cell ; 23(3): 343-354.e5, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30033120

RESUMEN

Animal cloning can be achieved through somatic cell nuclear transfer (SCNT), although the live birth rate is relatively low. Recent studies have identified H3K9me3 in donor cells and abnormal Xist activation as epigenetic barriers that impede SCNT. Here we overcome these barriers using a combination of Xist knockout donor cells and overexpression of Kdm4 to achieve more than 20% efficiency of mouse SCNT. However, post-implantation defects and abnormal placentas were still observed, indicating that additional epigenetic barriers impede SCNT cloning. Comparative DNA methylome analysis of IVF and SCNT blastocysts identified abnormally methylated regions in SCNT embryos despite successful global reprogramming of the methylome. Strikingly, allelic transcriptomic and ChIP-seq analyses of pre-implantation SCNT embryos revealed complete loss of H3K27me3 imprinting, which may account for the postnatal developmental defects observed in SCNT embryos. Together, these results provide an efficient method for mouse cloning while paving the way for further improving SCNT efficiency.


Asunto(s)
Implantación del Embrión/genética , Embrión de Mamíferos/metabolismo , Impresión Genómica , Histonas/metabolismo , Técnicas de Transferencia Nuclear , Animales , Embrión de Mamíferos/embriología , Femenino , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados
7.
Cell Rep ; 18(13): 3227-3241, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28355573

RESUMEN

The hypothalamus is one of the most complex brain structures involved in homeostatic regulation. Defining cell composition and identifying cell-type-specific transcriptional features of the hypothalamus is essential for understanding its functions and related disorders. Here, we report single-cell RNA sequencing results of adult mouse hypothalamus, which defines 11 non-neuronal and 34 neuronal cell clusters with distinct transcriptional signatures. Analyses of cell-type-specific transcriptomes reveal gene expression dynamics underlying oligodendrocyte differentiation and tanycyte subtypes. Additionally, data analysis provides a comprehensive view of neuropeptide expression across hypothalamic neuronal subtypes and uncover Crabp1+ and Pax6+ neuronal populations in specific hypothalamic sub-regions. Furthermore, we found food deprivation exhibited differential transcriptional effects among the different neuronal subtypes, suggesting functional specification of various neuronal subtypes. Thus, the work provides a comprehensive transcriptional perspective of adult hypothalamus, which serves as a valuable resource for dissecting cell-type-specific functions of this complex brain region.


Asunto(s)
Hipotálamo/citología , Hipotálamo/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Envejecimiento/genética , Animales , Diferenciación Celular/genética , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Femenino , Privación de Alimentos , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Oligodendroglía/citología , Transcripción Genética , Transcriptoma/genética
8.
Sci Rep ; 7(1): 10532, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874882

RESUMEN

Autophagy is a bulk cell-degradation process that occurs through the lysosomal machinery, and many reports have shown that it participates in microbial pathogenicity. However, the role of autophagy in Clostridium difficile infection (CDI), the leading cause of antibiotics-associated diarrhea, pseudomembranous colitis and even death in severe cases, is not clear. Here we report that the major virulent factor toxin B (TcdB) of Clostridium difficile elicits a strong autophagy response in host cells through its glucosyltransferase activity. Using a variety of autophagy-deficient cell lines, i.e. HeLa/ATG7 -/-, MEF/atg7 -/-, MEF/tsc2 -/-, we demonstrate that toxin-triggered autophagy inhibits host cell proliferation, which contributes to TcdB-caused cytopathic biological effects. We further show that both the PI3K complex and mTOR pathway play important roles in this autophagy induction process and consequent cytopathic event. Although the glucosyltransferase activity of TcdB is responsible for inducing both cell rounding and autophagy, there is no evidence suggesting the causal relationship between these two events. Taken together, our data demonstrate for the first time that the glucosyltransferase enzymatic activity of a pathogenic bacteria is responsible for host autophagy induction and the following cell growth arrest, providing a new paradigm for the role of autophagy in host defense mechanisms upon pathogenic infection.


Asunto(s)
Autofagia/efectos de los fármacos , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Glucosiltransferasas/farmacología , Animales , Células CACO-2 , Células HT29 , Células HeLa , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
9.
Nat Protoc ; 11(6): 1081-100, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27172168

RESUMEN

A complete understanding of the function of the ten-eleven translocation (TET) family of dioxygenase-mediated DNA demethylation requires new methods to quantitatively map oxidized 5-methylcytosine (5mC) bases at high resolution. We have recently developed a methylase-assisted bisulfite sequencing (MAB-seq) method that allows base-resolution mapping of 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), two oxidized 5mC bases indicative of active DNA demethylation events. In standard bisulfite sequencing (BS-seq), unmodified C, 5fC and 5caC are read as thymine; thus 5fC and 5caC cannot be distinguished from C. In MAB-seq, unmodified C is enzymatically converted to 5mC, allowing direct mapping of rare modifications such as 5fC and 5caC. By combining MAB-seq with chemical reduction of 5fC to 5hmC, we also developed caMAB-seq, a method for direct 5caC mapping. Compared with subtraction-based mapping methods, MAB-seq and caMAB-seq require less sequencing effort and enable robust statistical calling of 5fC and/or 5caC. MAB-seq and caMAB-seq can be adapted to map 5fC/5caC at the whole-genome scale (WG-MAB-seq), within specific genomic regions enriched for enhancer-marking histone modifications (chromatin immunoprecipitation (ChIP)-MAB-seq), or at CpG-rich sequences (reduced-representation (RR)-MAB-seq) such as gene promoters. The full protocol, including DNA preparation, enzymatic treatment, library preparation and sequencing, can be completed within 6-8 d.


Asunto(s)
Metilación de ADN/efectos de los fármacos , ADN/química , ADN/genética , Análisis de Secuencia de ADN/métodos , 5-Metilcitosina/metabolismo , Animales , Línea Celular , Citosina/análogos & derivados , Citosina/metabolismo , ADN/metabolismo , Metilasas de Modificación del ADN/metabolismo , Ratones , Sulfitos/farmacología
10.
Nat Biotechnol ; 32(12): 1231-40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25362244

RESUMEN

Active DNA demethylation in mammals involves TET-mediated iterative oxidation of 5-methylcytosine (5mC)/5-hydroxymethylcytosine (5hmC) and subsequent excision repair of highly oxidized cytosine bases 5-formylcytosine (5fC)/5-carboxylcytosine (5caC) by thymine DNA glycosylase (TDG). However, quantitative and high-resolution analysis of active DNA demethylation activity remains challenging. Here, we describe M.SssI methylase-assisted bisulfite sequencing (MAB-seq), a method that directly maps 5fC/5caC at single-base resolution. Genome-wide MAB-seq allows systematic identification of 5fC/5caC in Tdg-depleted embryonic stem cells, thereby generating a base-resolution map of active DNA demethylome. A comparison of 5fC/5caC and 5hmC distribution maps indicates that catalytic processivity of TET enzymes correlates with local chromatin accessibility. MAB-seq also reveals strong strand asymmetry of active demethylation within palindromic CpGs. Integrating MAB-seq with other base-resolution mapping methods enables quantitative measurement of cytosine modification states at key transitioning steps of the active DNA demethylation cascade and reveals a regulatory role of 5fC/5caC excision repair in this step-wise process.


Asunto(s)
Cromatina/genética , Metilación de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metiltransferasas/genética , 5-Metilcitosina/química , Animales , Secuencia de Bases , Citosina/análogos & derivados , Citosina/química , Reparación del ADN/genética , Células Madre Embrionarias/química , Regulación de la Expresión Génica/genética , Metiltransferasas/química , Ratones , Timina ADN Glicosilasa/genética
11.
Dev Cell ; 29(1): 20-33, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24703874

RESUMEN

Actomyosin contractility plays a key role in tissue morphogenesis. During mammalian development, PTK7 regulates epithelial morphogenesis and planar cell polarity (PCP) through modulation of actomyosin contractility, but the underlying mechanism is unknown. Here, we show that PTK7 interacts with the tyrosine kinase Src and stimulates Src signaling along cell-cell contacts. We further identify ROCK2 as a target of junctional PTK7-Src signaling. PTK7 knockdown in cultured epithelial cells reduced the level of active Src at cell-cell contacts, resulting in delocalization of ROCK2 from cell-cell contacts and decreased junctional contractility, with a concomitant increase in actomyosin on the basal surface. Moreover, we present in vivo evidence that Src family kinase (SFK) activity is critical for PCP regulation in the auditory sensory epithelium and that PTK7-SFK signaling regulates tyrosine phosphorylation of junctional ROCK2. Together, these results delineate a PTK7-Src signaling module for spatial regulation of ROCK activity, actomyosin contractility, and epithelial PCP.


Asunto(s)
Actomiosina/metabolismo , Polaridad Celular , Células Epiteliales/metabolismo , Uniones Intercelulares/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Cóclea/citología , Cóclea/metabolismo , Perros , Células Epiteliales/citología , Células Epiteliales/fisiología , Células de Riñón Canino Madin Darby , Ratones , Fosforilación , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA