Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 582(7811): 209-213, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32528096

RESUMEN

Twisted two-dimensional bilayer materials exhibit many exotic electronic phenomena. Manipulating the 'twist angle' between the two layers enables fine control of the electronic band structure, resulting in magic-angle flat-band superconductivity1,2, the formation of moiré excitons3-8 and interlayer magnetism9. However, there are limited demonstrations of such concepts for photons. Here we show how analogous principles, combined with extreme anisotropy, enable control and manipulation of the photonic dispersion of phonon polaritons in van der Waals bilayers. We experimentally observe tunable topological transitions from open (hyperbolic) to closed (elliptical) dispersion contours in bilayers of α-phase molybdenum trioxide (α-MoO3), arising when the rotation between the layers is at a photonic magic twist angle. These transitions are induced by polariton hybridization and are controlled by a topological quantity. At the transitions the bilayer dispersion flattens, exhibiting low-loss tunable polariton canalization and diffractionless propagation with a resolution of less than λ0/40, where λ0 is the free-space wavelength. Our findings extend twistronics10 and moiré physics to nanophotonics and polaritonics, with potential applications in nanoimaging, nanoscale light propagation, energy transfer and quantum physics.

2.
Nano Lett ; 24(4): 1360-1366, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252685

RESUMEN

Dielectric environment engineering is an efficient and general approach to manipulating polaritons. Liquids serving as the surrounding media of polaritons have been used to shift polariton dispersions and tailor polariton wavefronts. However, those liquid-based methods have so far been limited to their static states, not fully unleashing the promise offered by the mobility of liquids. Here, we propose a microfluidic strategy for polariton manipulation by merging polaritonics with microfluidics. The diffusion of fluids causes gradient refractive indices over microchannels, which breaks the symmetry of polariton dispersions and realizes the microfluidic analogue to nonreciprocal polariton dragging. Based on polariton microfluidics, we also designed a set of on-chip polaritonic elements to actively shape polaritons, including planar lenses, off-axis lenses, Janus lenses, bends, and splitters. Our strategy expands the toolkit for the manipulation of polaritons at the subwavelength scale and possesses potential in the fields of polariton biochemistry and molecular sensing.

3.
J Am Chem Soc ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598314

RESUMEN

We report the hierarchical assembly of a chloroplast-derived rotary FoF1-ATPase motor-propelled flasklike pentosan colloidal motor (FPCM) with the ability of the synthesis, storage, and triggered release of biological energy currency ATP. These streamlined and submicrometer-sized hollow flasklike pentosan colloidal motors are prepared by combining a soft-template-based hydrothermal polymerization with a vacuum infusion of chloroplast-derived proteoliposomes containing rotary FoF1-ATPase motors. The generation of proton motive force across the proteoliposomes by injecting an acidic buffer solution promotes the rotation of FoF1-ATPase motors to drive the self-propelled motion of FPCMs, accompanying the inner ATP synthesis and storage. These rotary FoF1-ATPase motor-powered FPCMs exhibit a chemotactic behavior by migrating from their neck opening to their round bottom along a proton gradient of the external environment (negative chemotaxis). Such rotary biomolecular motor-driven flasklike pentosan colloidal motors with ATP synthesis and on-demand release make them promising candidates for engineering novel intelligent nanocarriers to actively regulate cellular metabolism.

4.
Small ; 20(24): e2311891, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38178190

RESUMEN

The active lithium loss of lithium-ion batteries can be well addressed by adding a cathode lithium compensation agent. Due to the poor conductivity and electrochemical activity, lithium carbonate (Li2CO3) is not considered as a candidate. Herein, an effective cathode lithium compensation agent, the recrystallized Li2CO3 combined with large specific surface area disordered porous carbon (R-LCO@SPC) is prepared. The screened SPC makes it easier for nano-sized Li2CO3 to adsorb and decompose on carbon substrate, meantime, exposing plenty of catalytic active sites of C═O, which can significantly improve the electrochemical activity and conductivity of Li2CO3, thus greatly reducing the decomposition potential of Li2CO3 (4.0 V) and releasing high irreversible capacity (580 mAh g-1) compared to the unmodified Li2CO3 (nearly no capacity above 4.6 V). Meantime, the Li2CO3 can disappear completely without any by-product after the initial cycle accompanied by partially dissolved in electrolyte, optimizing the composition of SEI. The resultant lithium compensation agent applied to LMFP//graphite full cell exhibits a 19.1% increase in energy density, enhancing the rate and cycling performance, demonstrating great practical applications potential in high energy density lithium-ion batteries.

5.
Small ; 20(6): e2305706, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37788906

RESUMEN

Developing versatile systems that can concurrently achieve energy saving and energy generation is critical to accelerate carbon neutrality. However, challenges on designing highly effective, large scale, and multifunctional photonic film hinder the concurrent combination of passive daytime radiative cooling (PDRC) and utilization of sustainable clean energies. Herein, a versatile scalable photonic film (Ecoflex@h-BN) with washable property and excellent mechanical stability is developed by combining the excellent scattering efficiency of the hexagonal boron nitride (h-BN) nanoplates with the high infrared emissivity and ideal triboelectric negative property of the Ecoflex matrix. Strikingly, sufficiently high solar reflectance (0.92) and ideal emissivity (0.97) endow the Ecoflex@h-BN film with subambient cooling effect of ≈9.5 °C at midday during the continuous outdoor measurements. In addition, the PDRC Ecoflex@h-BN film-based triboelectric nanogenerator (PDRC-TENG) exhibits a maximum peak power density of 0.5 W m-2 . By reasonable structure design, the PDRC-TENG accomplishes effective wind energy harvesting and can successfully drive the electronic device. Meanwhile, an on-skin PDRC-TENG is fabricated to harvest human motion energy and monitor moving states. This research provides a novel design of a multifunctional PDRC photonic film, and offers a versatile strategy to realize concurrent PDRC and sustainable energies harvesting.

6.
Small ; 20(26): e2308661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258607

RESUMEN

Passive daytime radiative cooling (PDRC) materials with sustainable energy harvesting capability is critical to concurrently reduce traditional cooling energy utilized for thermal comfort and transfer natural clean energies into electricity. Herein, a versatile photonic film (Ecoflex@BTO@UAFL) based on a novel fluorescent luminescence color passive radiative cooling with triboelectric and piezoelectric effect is developed by filling the dielectric BaTiO3 (BTO) nanoparticles and ultraviolet absorption fluorescent luminescence (UAFL) powder into the elastic Ecoflex matrix. Test results demonstrate that the Ecoflex@BTO@UAFL photonic film exhibits a maximum passive radiative cooling effect of ∽10.1 °C in the daytime. Meanwhile, its average temperature drop in the daytime is ~4.48 °C, which is 0.91 °C higher than that of the Ecoflex@BTO photonic film (3.56 °C) due to the addition of UAFL material. Owing to the high dielectric constant and piezoelectric effect of BTO nanoparticles, the maximum power density (0.53 W m-2, 1 Hz @ 10 N) of the Ecoflex@BTO photonic film-based hybrid nanogenerator is promoted by 70.9% compared to the Ecoflex film-based TENG. This work provides an ingenious strategy for combining PDRC effects with triboelectric and piezoelectric properties, which can spontaneously achieve thermal comfort and energy conservation, offering a new insight into multifunctional energy saving.

7.
Small ; : e2401360, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708800

RESUMEN

Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.

8.
Biol Reprod ; 110(3): 599-614, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37975917

RESUMEN

Mammalian spermatogenesis is a highly complex multi-step biological process, and autophagy has been demonstrated to be involved in the process of spermatogenesis. Beclin-1/BECN1, a core autophagy factor, plays a critical role in many biological processes and diseases. However, its function in spermatogenesis remains largely unclear. In the present study, germ cell-specific Beclin 1 (Becn1) knockout mice were generated and were conducted to determine the role of Becn1 in spermatogenesis and fertility of mice. Results indicate that Becn1 deficiency leads to reduced sperm motility and quantity, partial failure of spermiation, actin network disruption, excessive residual cytoplasm, acrosome malformation, and aberrant mitochondrial accumulation of sperm, ultimately resulting in reduced fertility in male mice. Furthermore, inhibition of autophagy was observed in the testes of germ cell-specific Becn1 knockout mice, which may contribute to impaired spermiogenesis and reduced fertility. Collectively, our results reveal that Becn1 is essential for fertility and spermiogenesis in mice.


Asunto(s)
Infertilidad Masculina , Animales , Humanos , Masculino , Ratones , Autofagia , Beclina-1/genética , Beclina-1/metabolismo , Fertilidad/genética , Infertilidad Masculina/metabolismo , Mamíferos , Ratones Noqueados , Semen/metabolismo , Motilidad Espermática/genética , Espermatogénesis/genética , Espermatozoides/metabolismo
9.
Langmuir ; 40(14): 7492-7501, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38530941

RESUMEN

The important concept of confined synthesis is considered a promising strategy for the design and synthesis of definable nanostructured materials with controllable compositions and specific morphology, such as highly loaded single-atom catalysts capable of providing abundant active sites for photocatalytic reactions. In recent years, researchers have been working on developing new confined reaction systems and searching for new confined spaces. Here, we present for the first time the concept of a bubble liquid film as a novel confined space. The liquid film has a typical sandwich structure consisting of a water layer, sandwiched between the upper and lower surfactant layers, with the thickness of the intermediate water layer at the micro- and nanometer scales, which can serve as a good confinement. Based on the above understanding and combined with the photodeposition method, we successfully confined synthesized Ag/TiO2, Au/TiO2, and Pd/TiO2 photocatalysts in liquid film. By HAADF-STEM, it can be seen that the noble metal morphologies are all nanoclusters of about 1 nm and are highly uniformly dispersed on the TiO2 surface. Compared with photodeposition in solution, we believe that the surfactant molecular layer restricts a limited amount of precursor to the liquid film, avoiding the accumulation of noble metals and the formation of large particle size nanoparticles. The liquid film, meanwhile, restricts the migration path of noble metal precursors, allowing for thorough in situ photodeposition and enables the complete and uniform dispersion of noble metal precursors, greatly reducing the photodeposition time. The uniform loading of the three noble metals proved the universality of the method, and the catalysts showed high activity for photocatalytic CO2 reduction. The rates of reduction of CO2 to CO over the Ag/TiO2 photocatalytic reached 230 µmol g-1 h-1.This study provides a new idea for the expansion of the confined reaction system and a reference for the study of liquid film as the confined space.

10.
Cell Mol Life Sci ; 80(11): 319, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37804328

RESUMEN

Since the initial report of V (D) J "allelic exclusion/inclusion" (allelic exclusion rearrangement or allelic inclusion rearrangement) and the concept of the "dual B cell receptor (BCR)" in 1961, despite ongoing discoveries, the precise proportion and source mechanism of dual BCR under physiological conditions have been puzzling immuologists. This study takes advantage of the single cell B cell receptor sequencing (scBCR-seq) technology, which can perfectly match the heavy and light chains of BCR at the level of a single B cell, and obtain the full length mRNA sequence of the complementary determining region 3 (CDR3). Through analyzing the pairing of functional IGH (immunoglobulin heavy chain) and IGL (immunoglobulin light chain) in single B cell from both human and mouse bone marrow and peripheral blood, it was observed that dual BCR B cells exhibit stable and high levels of expression. Among them, the human bone marrow and peripheral blood contain about 10% dual (or multiple) BCR B cells, while in mouse peripheral blood and bone marrow memory B cells, this proportion reaches around 20%. At the same time, we innovatively found that in each research sample of humans and mice, there are three (or more) functional rearrangements (mRNA level) of a single chain in a single B cell. By analyzing the position, direction and other compositional characteristics of the V(D)J gene family, we found that at least two (or more) of them are derived from over two (or more) specific allelic inclusion rearrangements of a single chromosome (mRNA molecular level evidence), our findings also highlighted the necessity of classified single cell sequencing data based on single, dual (or multiple) and cannot be assembled into BCR when analyzing the B cell repertoire. The results of this article provides new methods and modeling references for evaluating the proportion and source mechanisms of dual BCR B cells, as well as potential significance of allelic inclusion (exclusion escape) of V(D)J rearrangement.


Asunto(s)
Linfocitos B , Receptores de Antígenos de Linfocitos B , Ratones , Humanos , Animales , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , ARN Mensajero/genética
11.
Ecotoxicol Environ Saf ; 274: 116229, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508101

RESUMEN

Carbon-fixing functional strain-loaded biochar may have significant potential in carbon sequestration given the global warming situation. The carbon-fixing functional strain Bacillus cereus SR was loaded onto rice straw biochar pyrolyzed at different temperatures with the anticipation of clarifying the carbon sequestration performance of this strain on biochar and the interaction effects with biochar. During the culture period, the content of dissolved organic carbon (DOC), easily oxidizable organic carbon, and microbial biomass carbon in biochar changed. This finding indicated that B. cereus SR utilized organic carbon for survival and enhanced carbon sequestration on biochar to increase organic carbon, manifested by changes in CO2 emissions and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme activity. Linear regression analysis showed that the strain was likely to consume DOC on 300 °C biochar, although the Rubisco enzyme activity was higher. In contrast, the strain had a higher carbon sequestration potential on 500 °C biochar. Correlation analysis showed that Rubisco enzyme activity was controlled by the physical structure of the biochar. Our results highlight the differences in the survival mode and carbon sequestration potential of B. cereus SR on biochar pyrolyzed at different temperatures.


Asunto(s)
Bacillus cereus , Carbono , Secuestro de Carbono , Ribulosa-Bifosfato Carboxilasa , Suelo/química , Carbón Orgánico/química , Agricultura/métodos
12.
Mikrochim Acta ; 191(7): 393, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874794

RESUMEN

Rutin extracted from natural plants has important medical value, so developing accurate and sensitive quantitative detection methods is one of the most important tasks. In this work, HKUST-1@GN/MoO3-Ppy NWs were utilized to develop a high-performance rutin electrochemical sensor in virtue of its high conductivity and electrocatalytic activity. The morphology, crystal structure, and chemical element composition of the fabricated sensor composites were characterized by SEM, TEM, XPS, and XRD. Electrochemical techniques including EIS, CV, and DPV were used to investigate the electrocatalytic properties of the prepared materials. The electrochemical test conditions were optimized to achieve efficient detection of rutin. The 2-electron 2-proton mechanism, consisting of several rapid and sequential phases, is postulated to occur during rutin oxidation. The results show that HKUST-1@GN/MoO3-Ppy NWs have the characteristics of large specific surface area, excellent conductivity, and outstanding electrocatalytic ability. There is a significant linear relationship between rutin concentration and the oxidation peak current of DPV. The linear range is 0.50-2000 nM, and the limit of detection is 0.27 nM (S/N = 3). In addition, the prepared electrode has been confirmed to be useful for rutin analysis in orange juice.

13.
Int J Phytoremediation ; : 1-11, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780520

RESUMEN

Moso bamboo is excellent candidate for cadmium (Cd)/lead (Pb) phytoremediation, while rhizosphere microbiome has significant impact on phytoremediation efficiency of host plant. However, little is known about the rhizosphere bacterial communities of moso bamboo in Cd/Pb contaminated soils. Therefore, this study investigated the assembly patterns and key taxa of rhizosphere bacterial communities of moso bamboo in Cd/Pb polluted and unpolluted soils, by field sampling, chemical analysis, and 16S rRNA gene sequencing. The results indicated α-diversity between Cd/Pb polluted and unpolluted soils showed a similar pattern (p > 0.05), while ß-diversity was significantly different (p < 0.05). The relative abundance analysis indicated α-proteobacteria (37%) and actinobacteria (31%) were dominant in Cd/Pb polluted soils, while γ-proteobacteria (40%) and α-proteobacteria (22%) were dominant in unpolluted soils. Co-occurrence network analysis indicated microbial networks were less complex and more negative in polluted soils than in unpolluted soils. Mantel analysis indicated soil available phosphorus, organic matter, and available Pb were the most important environmental factors affecting microbial community structure. Correlation analysis showed 11 bacterial genera were significantly positively related to Cd/Pb. Overall, this study identified the bacterial community composition of bamboo rhizosphere in responding to Cd/Pb contamination and provides a theoretical basis for microbe-assistant phytoremediation in the future.


To date, little is known about the bacterial communities in the rhizosphere of moso bamboo under Cd and Pb multiple stresses. This study investigated the assembly patterns and key taxa of rhizospheric bacterial communities of moso bamboo in Cd/Pb polluted and unpolluted soils. It was found that the bacterial community structure in bamboo rhizosphere is easily influenced by soil chemical environment, such as fertilities and heavy metals. The key bacterial taxa identified here could be target microbe in future microbe-assistant phytoremediation.

14.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612449

RESUMEN

Stress granules (SGs) are membraneless ribonucleoprotein (RNP)-based cellular foci formed in response to stress, facilitating cell survival by protecting against damage. Mammalian spermatogenesis should be maintained below body temperature for proper development, indicating its vulnerability to heat stress (HS). In this study, biotin tracer permeability assays showed that the inhibition of heat-induced SG assembly in the testis by 4-8 mg/kg cycloheximide significantly increased the percentage of seminiferous tubules with a damaged blood-testis barrier (BTB). Western blot results additionally revealed that the suppression of heat-induced SG assembly in Sertoli cell line, TM4 cells, by RNA inference of G3bp1/2 aggravated the decline in the BTB-related proteins ZO-1, ß-Catenin and Claudin-11, indicating that SGs could protect the BTB against damage caused by HS. The protein components that associate with SGs in Sertoli cells were isolated by sequential centrifugation and immunoprecipitation, and were identified by liquid chromatography with tandem mass spectrometry. Gene Ontology and KEGG pathway enrichment analysis revealed that their corresponding genes were mainly involved in pathways related to proteasomes, nucleotide excision repair, mismatch repair, and DNA replication. Furthermore, a new SG component, the ubiquitin associated protein 2 (UBAP2), was found to translocate to SGs upon HS in TM4 cells by immunofluorescence. Moreover, SG assembly was significantly diminished after UBAP2 knockdown by RNA inference during HS, suggesting the important role of UBAP2 in SG assembly. In addition, UBAP2 knockdown reduced the expression of ZO-1, ß-Catenin and Claudin-11, which implied its potential role in the function of the BTB. Overall, our study demonstrated the role of SGs in maintaining BTB functions during HS and identified a new component implicated in SG formation in Sertoli cells. These findings not only offer novel insights into the biological functions of SGs and the molecular mechanism of low fertility in males in summer, but also potentially provide an experimental basis for male fertility therapies.


Asunto(s)
Barrera Hematotesticular , ADN Helicasas , Masculino , Animales , Ratones , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , beta Catenina , ARN , Claudinas , Mamíferos
15.
J Environ Manage ; 353: 120084, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281421

RESUMEN

Crop straw return is a widely used agricultural management practice. The addition of crop straw significantly alters the pool of dissolved organic matter (DOM) in agricultural soils and plays a pivotal role in the global carbon (C) cycle, which is sensitive to climate change. The DOM concentration and composition at different soil depths could regulate the turnover and further storage of organic C in terrestrial systems. However, it is still unclear how crop straw return influences the change in DOM composition in rice paddy soils. Therefore, a field experiment was conducted in which paddy soil was amended with crop straw for 10 years. Two crop straw-addition treatments [NPK with 50% crop straw (NPK+1/2S) and NPK with 100% crop straw (NPK + S)], a conventional mineral fertilization control (NPK) and a non-fertilized control were included. Topsoil (0-20 cm) and subsoil (20-40 cm) samples were collected to investigate the soil DOM concentration and compositional structure of the profile. Soil nutrients, iron (Fe) fraction, microbial biomass carbon (MBC), and concentration and optical properties (UV-Vis and fluorescence spectra) of soil DOM were determined. Here, we found that the DOM in the topsoil was more humified than that in the subsoil. The addition of crop straw further decreased the humidification degree of DOM in the subsoil. In crop straw-amended topsoil, microbial decomposition controlled the composition of DOM and induced the formation of aromatic DOM. In the straw-treated subsoil, selective adsorption by poorly crystalline Fe(oxyhydr)oxides and microbial decomposition controlled the composition of DOM. In particular, the formation of protein-like compounds could have played a significant role in the microbial degradation of DOM in the subsoil. Overall, this work conducted a case study within long-term agricultural management to understand the changes in DOM composition along the soil profile, which would be further helpful for evaluating C cycling in agricultural ecosystems.


Asunto(s)
Materia Orgánica Disuelta , Oryza , Ecosistema , Suelo/química , Agricultura , Carbono
16.
J Biol Chem ; 298(8): 102179, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752365

RESUMEN

Lipid droplets (LDs) are intracellular organelles that dynamically regulate lipids and energy homeostasis in the cell. LDs can grow through either local lipid synthesis or LD fusion. However, how lipids involving in LD fusion for LD growth is largely unknown. Here, we show that genetic mutation of acox-3 (acyl-CoA oxidase), maoc-1 (enoyl-CoA hydratase), dhs-28 (3-hydroxylacyl-CoA dehydrogenase), and daf-22 (3-ketoacyl-CoA thiolase), all involved in the peroxisomal ß-oxidation pathway in Caenorhabditis elegans, led to rapid fusion of adjacent LDs to form giant LDs (gLDs). Mechanistically, we show that dysfunction of peroxisomal ß-oxidation results in the accumulation of long-chain fatty acid-CoA and phosphocholine, which may activate the sterol-binding protein 1/sterol regulatory element-binding protein to promote gLD formation. Furthermore, we found that inactivation of either FAT-2 (delta-12 desaturase) or FAT-3 and FAT-1 (delta-15 desaturase and delta-6 desaturase, respectively) to block the biosynthesis of polyunsaturated fatty acids (PUFAs) with three or more double bonds (n≥3-PUFAs) fully repressed the formation of gLDs; in contrast, dietary supplementation of n≥3-PUFAs or phosphocholine bearing these PUFAs led to recovery of the formation of gLDs in peroxisomal ß-oxidation-defective worms lacking PUFA biosynthesis. Thus, we conclude that n≥3-PUFAs, distinct from other well-known lipids and proteins, promote rapid LD fusion leading to LD growth.


Asunto(s)
Caenorhabditis elegans , Ácidos Grasos Omega-3 , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Coenzima A/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Gotas Lipídicas/metabolismo , Fosforilcolina/metabolismo , Esteroles/metabolismo
17.
Opt Express ; 31(3): 4639-4651, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785426

RESUMEN

To solve the problem of light source jitter and asymmetric 3 × 3 coupler, a phase demodulation method with the combination of an auxiliary reference interferometer and elliptic fitting algorithm is proposed, which is verified by simulation and experiment. By introducing additional phase modulation in the auxiliary reference interferometer, the parameters of the sensing arm can be calibrated in real time, which ensures the effective operation of elliptic fitting algorithm in small signal measurement. Consequently, the experiments show that the self-calibration scheme enables a higher signal to noise and distortion ratio with an average increase of 1.65 dB and 10.47 dB compared with the traditional Arctan and cross multiplication differential, respectively. Meanwhile, the self-calibration scheme can also effectively suppress the harmonic distortion, with a total harmonic distortion of -33.64 dB in the case of small signal.

18.
Ecotoxicol Environ Saf ; 257: 114948, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37105098

RESUMEN

Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.


Asunto(s)
Aflatoxinas , Fumonisinas , Micotoxinas , Perros , Animales , Micotoxinas/toxicidad , Alimentación Animal/análisis , Contaminación de Alimentos/análisis , Fumonisinas/análisis , Grano Comestible/química
19.
Ecotoxicol Environ Saf ; 262: 115146, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37348222

RESUMEN

Ferromanganese oxide biochar composite (FMBC) is an efficient remediation material for cadmium -contaminated soils. However, the effect of FMBC under varied water managements on the remediation of Cd-polluted soil is unclear. In this study, we conducted both incubation and field experiments to investigate the combined effects of corn-stover-derived biochar modified with ferromanganese on the immobilization and uptake of Cd by rice under continuous aerobic (A), aerobic-flooded (AF), and flooded-aerobic (FA) water management regimes. The results showed that loading iron-manganese significantly increased the maximum sorption capacity (Qm) of Cd on FMBC (50.46 mg g-1) due to increased surface area, as compared to the pristine biochar (BC, 31.36 mg g-1). The results revealed that soil Eh and pH were significantly affected by FMBC and it's synergistic application with different water regimes, thus causing significant differences in the concentrations of DTPA-extractable Cd under different treatments. The lowest DTPA-extractable Cd content (0.28-0.46 mg-1) was observed in the treatment with FMBC (2.5 %) combined FA water amendment, which reduced the content of available Cd in soil by 2.63-28.4 %. Moreover, the treatments with FMBC-FA resulted the proportion of residual Cd increased by 22.2 % compared to the control. Variations in the content and fraction of Cd had a significant influence on its accumulation in the rice grains. The FMBC-FA treatments reduced the Cd concentration in roots, shoots and grains by 37.97 %, 33.98 %, and 53.66 %, respectively, when compared with the control. Predominantly because of the reduction in Cd biological toxicity and the improved soil nutrient content, the combined application increased the biomass and yield of rice to some extent. Taken together, the combination of the Fe-Mn modified biochar and flooded-aerobic water management may potentially be applied in Cd-polluted soil to mitigate the impacts of Cd on rice production.

20.
Ecotoxicol Environ Saf ; 249: 114481, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321693

RESUMEN

The impact of atmospheric deposition of cadmium (Cd) in cereal crops has become a global concern. Enhanced lignin content was expected to benefit the plant performance against Cd exposure. To date, however, the underlying mechanisms of lignin regulating foliar Cd absorption in rice (Oryza sativa L.) and its effect on grain yield remains unclear. In present study, the effect and mechanism of rice in response to leaf Cd exposure were investigated using 113Cd stable isotope and a lignin-increased rice mutant. The highest Cd uptake efficiency and uptake amount was observed in wild type (WT) plant grown in the maturity period, which were 3-fold higher than in mutant plant. Compared to WT, the mutant exhibited 14.75% and 25.43% higher contents in G- and S-unit of lignin monomers. Lignin biosynthesis and polymerization related genes (OsPAL/OsCOMT/Os4CL3/OsLAC5/OsLAC15) were significantly up-regulated in mutants. In addition, the enzyme activities involved in the above process were also significantly increased by 1.24-1.49-fold. The increased Cd retention in cell wall and decreased gene expression levels of OsNRAMP5, OsHMA3 and OsIRT1 in mutant indicated that lignin effectively inhibited Cd transportion in plant tissues. Moreover, the antioxidant capacity and photosynthesis efficiency in mutant plant were obviously improved, leading to higher Cd tolerance and increased grain yield. Our results revealed the molecular and physiological mechanisms of enhanced lignin regulating foliar Cd absorption and yield in rice, and provided the valuable rice genotype to ensure food safety.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Lignina/metabolismo , Oryza/metabolismo , Transporte Biológico , Antioxidantes/metabolismo , Grano Comestible/química , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA