Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142679

RESUMEN

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Microbioma Gastrointestinal/genética , Glutamina/análogos & derivados , Trombosis/metabolismo , Animales , Arterias/lesiones , Arterias/metabolismo , Arterias/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/microbiología , Enfermedades Cardiovasculares/patología , Muerte Súbita Cardíaca/patología , Glutamina/sangre , Glutamina/genética , Humanos , Masculino , Metaboloma/genética , Metabolómica/métodos , Ratones , Infarto del Miocardio/sangre , Infarto del Miocardio/microbiología , Activación Plaquetaria/genética , Receptores Adrenérgicos alfa/sangre , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/sangre , Receptores Adrenérgicos beta/genética , Factores de Riesgo , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/microbiología , Accidente Cerebrovascular/patología , Trombosis/genética , Trombosis/microbiología , Trombosis/patología
2.
Cell ; 165(1): 111-124, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26972052

RESUMEN

Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.


Asunto(s)
Plaquetas/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Trombosis/metabolismo , Animales , Calcio/metabolismo , Traumatismos de las Arterias Carótidas/patología , Ciego/microbiología , Cloruros , Colina/metabolismo , Dieta , Femenino , Compuestos Férricos , Vida Libre de Gérmenes , Humanos , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Trombosis/patología
3.
Small ; 20(13): e2309154, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967335

RESUMEN

Aqueous batteries have garnered significant attention in recent years as a viable alternative to lithium-ion batteries for energy storage, owing to their inherent safety, cost-effectiveness, and environmental sustainability. This study offers a comprehensive review of recent advancements, persistent challenges, and the prospects of aqueous batteries, with a primary focus on energy density compensation of various battery engineering technologies. Additionally, cutting-edge high-energy aqueous battery designs are emphasized as a reference for future endeavors in the pursuit of high-energy storage solutions. Finally, a dual-compatibility battery configuration perspective aimed at concurrently optimizing cycle stability, redox potential, capacity utilization for both anode and cathode materials, as well as the selection of potential electrode candidates, is proposed with the ultimate goal of achieving cell-level energy densities exceeding 400 Wh kg-1.

4.
Small ; : e2402595, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764288

RESUMEN

The widespread adoption of aqueous Zn ion batteries is hindered by the instability of the Zn anode. Herein, an elegant strategy is proposed to enhance the stability of Zn anode by incorporating nicotinic acid (NA), an additive with a unique molecule-ion conversion mechanism, to optimize the anode/electrolyte interface and the typical ZnSO4 electrolyte system. Experimental characterization and theoretical calculations demonstrate that the NA additive preferentially replaces H2O in the original solvation shell and adsorbs onto the Zn anode surface upon conversion from molecule to ion in the electrolyte environment, thereby suppressing side reactions arising from activated H2O decomposition and stochastic growth of Zn dendrites. Simultaneously, such a molecule-to-ion conversion mechanism may induce preferential deposition of Zn along the (002) plane. Benefiting from it, the Zn||Zn symmetric battery cycles stably for 2500 h at 1 mA cm-2, 1 mAh cm-2. More encouragingly, the Zn||AC full batteries and the Zn||AC full batteries using NA electrolyte and Zn||VO2 full batteries also exhibit excellent performance improvements. This work emphasizes the role of variation in the form of additives (especially weak acid-based additives) in fine-tuning the solvation structure and the anode/electrolyte interface, hopefully enhancing the performance of various aqueous metal batteries.

5.
Small ; 20(23): e2310225, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38158336

RESUMEN

Room-temperature sodium-sulfur (RT Na-S) batteries hold immense promise as next-generation energy storage systems, owing to their exceptionally high theoretical capacity, abundant resources, eco-friendliness, and affordability. Nevertheless, their practical application is impeded by the shuttling effect of sodium polysulfides (NaPSs) and sluggish sulfur redox kinetics. In this study, an advanced strategy by designing 3D flower-like molybdenum telluride (MoTe2) as an efficient catalyst to promote sulfur redox for RT Na-S batteries is presented. The unique 3D flower-like MoTe2 effectively prevents NaPS shuttling and simultaneously offers abundant active catalytic sites facilitating polysulfide redox. Consequently, the obtained MoTe2/S cathode delivers an outstanding initial reversible capacity of 1015 mAh g-1 at 0.1 C, along with robust cycling stability of retaining 498 mAh g-1 at 1 C after 500 cycles. In addition, pouch cells are fabricated with the MoTe2 additive to deliver an ultrahigh initial discharge capacity of 890 mAh g-1 and remain stable over 40 cycles under practically necessary conditions, demonstrating the potential application in the commercialization of RT Na-S batteries.

6.
Small ; 20(34): e2401857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38676350

RESUMEN

The performance of electrochemical batteries is intricately tied to the physicochemical environments established by their employed electrolytes. Traditional battery designs utilizing a single electrolyte often impose identical anodic and cathodic redox conditions, limiting the ability to optimize redox environments for both anode and cathode materials. Consequently, advancements in electrolyte technologies are pivotal for addressing these challenges and fostering the development of next-generation high-performance electrochemical batteries. This review categorizes perspectives on electrolyte technology into three key areas: additives engineering, comprehensive component analysis encompassing solvents and solutes, and the effects of concentration. By summarizing significant studies, the efficacy of electrolyte engineering is highlighted, and the review advocates for further exploration of optimized component combinations. This review primarily focuses on liquid electrolyte technologies, briefly touching upon solid-state electrolytes due to the former greater vulnerability to electrode and electrolyte interfacial effects. The ultimate goal is to generate increased awareness within the battery community regarding the holistic improvement of battery components through optimized combinations.

7.
Small ; 20(5): e2306428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759404

RESUMEN

Silicon (Si) is considered a promising commercial material for the next-generation of high-energy density lithium-ion battery (LIB) due to its high theoretical capacity. However, the severe volume changes and the poor conductivity hinder the practical application of Si anode. Herein, a novel core-shell heterostructure, Si as the core and V3 O4 @C as the shell (Si@V3 O4 @C), is proposed by a facile solvothermal reaction. Theoretical simulations have shown that the in-situ-formed V3 O4 layer facilitates the rapid Li+ diffusion and lowers the energy barrier of Li transport from the carbon shell to the inner core. The 3D network structure constructed by amorphous carbon can effectively improve electronic conductivity and structural stability. Benefiting from the rationally designed structure, the optimized Si@V3 O4 @C electrode exhibits an excellent cycling stability of 1061.1 mAh g-1 at 0.5 A g-1 over 700 cycles (capacity retention of 70.0%) with an average Coulombic efficiency of 99.3%. In addition, the Si@V3 O4 @C||LiFePO4 full cell shows a superior capacity retention of 78.7% after 130 cycles at 0.5 C. This study opens a novel way for designing high-performance silicon anode for advanced LIBs.

8.
Small ; : e2310907, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051510

RESUMEN

Biomass-derived materials generally exhibit uniform and highly-stable hierarchical porous structures that can hardly be achieved by conventional chemical synthesis and artificial design. When used as electrodes for rechargeable batteries, these structural and compositional advantages often endow the batteries with superior electrochemical performances. This review systematically introduces the innate merits of biomass-derived materials and their applications as the electrode for advanced rechargeable batteries, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and metal-sulfur batteries. In addition, biomass-derived materials as catalyst supports for metal-air batteries, fuel cells, and redox-flow batteries are also included. The major challenges for specific batteries and the strategies for utilizing biomass-derived materials are detailly introduced. Finally, the future development of biomass-derived materials for advanced rechargeable batteries is prospected. This review aims to promote the development of biomass-derived materials in the field of energy storage and provides effective suggestions for building advanced rechargeable batteries.

9.
Chemistry ; 30(13): e202303917, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38093171

RESUMEN

Aqueous zinc-ion batteries (ZIBs) have emerged as the most promising candidate for large-scale energy storage due to their inherent safety, environmental friendliness, and cost-effectiveness. Simultaneously, the utilization of organic electrode materials with renewable resources, environmental compatibility, and diverse structures has sparked a surge in research and development of aqueous Zn-organic batteries (ZOBs). A comprehensive review is warranted to systematically present recent advancements in design principles, synthesis techniques, energy storage mechanisms, and zinc-ion storage performance of organic cathodes. In this review article, we comprehensively summarize the energy storage mechanisms employed by aqueous ZOBs. Subsequently, we categorize organic cathode materials into small-molecule compounds and high-molecular polymers respectively. Novel polymer materials such as conjugated polymers (CPs), conjugated microporous polymers (CMPs), and covalent organic frameworks (COFs) are highlighted with an overview of molecular design strategies and structural optimization based on organic cathode materials aimed at enhancing the performance of aqueous ZOBs. Finally, we discuss the challenges faced by aqueous ZOBs along with future prospects to offer insights into their practical applications.

10.
Faraday Discuss ; 248(0): 160-174, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37753617

RESUMEN

Lithium-oxygen batteries are promising but have many challenges. Unlike lithium-ion batteries, they are usually discharge-charge cycled with capacity cutoff instead of potential cutoff, which brings controversy. Additionally, which superoxide intermediate, the dissolved or the adsorbed superoxide, is more reactive and leads to cell premature death and unsatisfactory discharge capacity? These questions puzzle researchers and impede the development of lithium-oxygen batteries. Herein, on one hand, we tried to decouple the influence of discharging potential and discharging current density on the discharge products and side reactions. We found that the electrode potential has more impact on the side reactions than the current density. The low potential leads to a high ratio of Li2CO3 to Li2O2 in the discharge product and hence more surface passivation. On the other hand, to identify the more reactive and aggressive species that cause surface passivation, a flow cell setup was applied to suppress the solution route and maximize the products from the surface route. Results show that more Li2CO3 was identified under a large flow rate and thus the intermediates in surface route appear to be more reactive than that in solution route.

11.
Environ Sci Technol ; 58(9): 4368-4380, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386007

RESUMEN

Despite the increasing health risks shown by the continuous detection of organophosphate esters (OPEs) in biota in recent years, information on the occurrence and potential risks of OPEs in marine mammals remains limited. This study conducted the first investigation into the body burdens and potential risks of 10 traditional OPEs (tOPEs) and five emerging OPEs (eOPEs) in 10 cetacean species (n = 84) from the northern South China Sea (NSCS) during 2005-2021. All OPEs, except for 2-ethylhexyl diphenyl phosphate (EHDPHP), were detected in these cetaceans, indicating their widespread occurrence in the NSCS. Although the levels of the ∑10tOPEs in humpback dolphins remained stable from 2005 to 2021, the concentrations of the ∑5eOPEs showed a significant increase, suggesting a growing demand for these new-generation OPEs in South China. Dolphins in proximity to urban regions generally exhibited higher OPE concentrations than those from rural areas, mirroring the environmental trends of OPEs occurring in this area. All OPE congeners, except for EHDPHP, in humpback dolphins exhibited a maternal transfer ratio >1, indicating that the dolphin placenta may not be an efficient barrier for OPEs. The observed significant correlations between levels of OPEs and hormones (triiodothyronine, thyroxine, and testosterone) in humpback dolphins indicated that OPE exposures might have endocrine disruption effects on the dolphin population.


Asunto(s)
Delfines , Retardadores de Llama , Animales , Monitoreo del Ambiente , Bioacumulación , Ésteres , China , Organofosfatos , Fosfatos , Retardadores de Llama/análisis
12.
Environ Sci Technol ; 58(1): 63-74, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38112512

RESUMEN

The detrimental effects of bisphenol (BP) exposure are a concern for vulnerable species, Indo-Pacific humpback dolphins (Sousa chinensis). To investigate the characteristics of BP profiles and their adverse impact on humpback dolphins, we assessed the concentrations of six BPs, including bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), bisphenol B (BPB), and bisphenol P (BPP) in blubber (n = 26) and kidney (n = 12) of humpback dolphins stranded in the Pearl River Estuary, China. BPS accounted for the largest proportion of the total bisphenols (∑BPs) in blubber (55%) and kidney (69%). The concentration of ∑BP in blubber was significantly higher than that in the kidney and liver. The EC50 values of five BPA alternatives were lower than those of BPA in humpback dolphin skin fibroblasts (ScSF) and human skin fibroblasts (HSF). ScSF was more sensitive to BPS, BPAF, BPB, and BPP than HSF. The enrichment pathway of BPA was found to be associated with inflammation and immune dysregulation, while BPP and BPS demonstrated a preference for genotoxicity. BPA, BPP, and BPS, which had risk quotients (RQs) > 1, were found to contribute to subhealth and chronic disease in humpback dolphins. According to the EC50-based risk assessment, BPS poses a higher health risk than BPA for humpback dolphins. This study successfully evaluated the risks of bisphenols in rare and endangered cetacean cell lines using a noninvasive method. More in vivo and in field observations are necessary to know whether the BPA alternatives are likely to be regrettable substitutions.


Asunto(s)
Delfines , Contaminantes Químicos del Agua , Animales , Humanos , Delfines/metabolismo , Contaminantes Químicos del Agua/toxicidad , China , Compuestos de Bencidrilo/toxicidad
13.
Environ Sci Technol ; 58(21): 9102-9112, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752859

RESUMEN

Cetaceans play a pivotal role in maintaining the ecological equilibrium of ocean ecosystems. However, their populations are under global threat from environmental contaminants. Various high levels of endocrine-disrupting chemicals (EDCs) have been detected in cetaceans from the South China Sea, such as the Indo-Pacific humpback dolphins in the Pearl River Estuary (PRE), suggesting potential health risks, while the impacts of endocrine disruptors on the dolphin population remain unclear. This study aims to synthesize the population dynamics of the humpback dolphins in the PRE and their profiles of EDC contaminants from 2005 to 2019, investigating the potential role of EDCs in the population dynamics of humpback dolphins. Our comprehensive analysis indicates a sustained decline in the PRE humpback dolphin population, posing a significant risk of extinction. Variations in sex hormones induced by EDC exposure could potentially impact birth rates, further contributing to the population decline. Anthropogenic activities consistently emerge as the most significant stressor, ranking highest in importance. Conventional EDCs demonstrate more pronounced impacts on the population compared to emerging compounds. Among the conventional pollutants, DDTs take precedence, followed by zinc and chromium. The most impactful emerging EDCs are identified as alkylphenols. Notably, as the profile of EDCs changes, the significance of conventional pollutants may give way to emerging EDCs, presenting a continued challenge to the viability of the humpback dolphin population.


Asunto(s)
Delfines , Disruptores Endocrinos , Dinámica Poblacional , Animales , Disruptores Endocrinos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente
14.
Ecotoxicol Environ Saf ; 284: 116909, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178761

RESUMEN

T-2 toxin, a trichothecene mycotoxin, is an important environmental pollutant that poses a threat globally to the health of humans and animals. It has been found to induce nephrotoxicity; however, the precise molecular mechanism involved remains unclear. In this study, mice were administered at a single dose of 2 mg/kg body weight T-2 toxin intraperitoneally, and kidney function and ultrastructural observations were assessed after 1 d, 3 d, and 7 d. Histopathological findings revealed that exposure to T-2 toxin caused noticeable tubular degeneration, necrosis and epithelial cell shedding in mouse kidneys. Transmission electron microscopy indicated that exposure to T-2 toxin caused mitochondrial swelling and vacuolization. Transcriptomic data revealed significant differences in the expression of 1122, 58, and 391 genes in kidney tissues 1 d, 3 d, or 7 d after T-2 toxin exposure, respectively. Moreover, after 1 d, the downregulated differentially expressed genes (DEGs) were found to be involved in the cell cycle, p53 signaling, and cellular senescence pathways, while the upregulated DEGs were found to be associated with the ribosomal pathway. Temporal changes in gene expression patterns (i.e., after 3 d and 7 d) and disturbances in cellular metabolism during the recovery period (7 d) were detected in mouse kidneys after exposure to T-2 toxin. In conclusion, this study is the first to provide a comprehensive comparative transcriptomic analysis of T-2 toxin exposure-induced nephrotoxicity-related gene regulation at different time points and to investigate the mechanism underlying the nephrotoxicity of T-2 toxin at the mRNA expression level.

15.
Pestic Biochem Physiol ; 200: 105814, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582586

RESUMEN

To explore active natural products against tobacco powdery mildew caused by Golovinomyces cichoracearum, an extract from the fermentation of endophytic Aspergillus fumigatus 0338 was investigated. The mechanisms of action for active compounds were also studied in detail. As a result, 14 indole alkaloid derivatives were isolated, with seven being newly discovered (1-7) and the remaining seven previously described (8-14). Notably, compounds 1-3 are rare linearly fused 6/6/5 tricyclic prenylated indole alkaloids, with asperversiamide J being the only known natural product of this kind. The isopentenyl substitutions at the 5-position in compounds 4 and 5 are also rare, with only compounds 1-(5-prenyl-1H-indol-3-yl)-propan-2-one (8) and 1-(6-methoxy-5-prenyl-1H-indol3-yl)-propan-2-one currently available. In addition, compounds 6 and 7 are new framework indole alkaloid derivatives bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. The purified compounds were evaluated for their activity against G. cichoracearum, and the results revealed that compounds 7 and 9 demonstrated obvious anti-G. cichoracearum activities with an inhibition rate of 82.6% and 85.2%, respectively, at a concentration of 250 µg/mL, these rates were better than that of the positive control agent, carbendazim (78.6%). The protective and curative effects of compounds 7 and 9 were also better than that of positive control, at the same concentration. Moreover, the mechanistic study showed that treatment with compound 9 significantly increased the structural tightness of tobacco leaves and directly affect the conidiospores of G. cichoracearum, thereby enhancing resistance. Compounds 7 and 9 could also induce systemic acquired resistance (SAR), directly regulating the expression of defense enzymes, defense genes, and plant semaphorins, which may further contribute to increased plant resistance. Based on the activity experiments and molecular dockings, the indole core structure may be the foundation of these compounds' anti-G. cichoracearum activity. Among them, the indole derivative parent structures of compounds 6, 7, and 9 exhibit strong effects. Moreover, the methoxy substitution in compound 7 can enhance their activity. By isolating and structurally identifying the above indole alkaloids, new candidates for anti-powdery mildew chemical screening were discovered, which could enhance the utilization of N. tabacum-derived fungi in pesticide development.


Asunto(s)
Alcaloides , Aspergillus fumigatus , Neopreno , Nicotiana , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Alcaloides/farmacología
16.
Int J Nurs Pract ; 30(3): e13237, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38263693

RESUMEN

BACKGROUND: The condition and correlation of fatigue, sleep and physical activity in postoperative patients with pituitary adenomas remain unclear. This survey aimed to evaluate the current status and influencing factors of fatigue, sleep and physical activity in postoperative patients with pituitary adenomas. METHODS: Patients undergoing pituitary adenoma resection in two tertiary hospitals from November 2019 to November 2021 were included. The general data questionnaire, Multidimensional Fatigue Inventory (MFI-20), Pittsburgh Sleep Quality Index (PSQI) and international physical activity questionnaire were used for data analysis. RESULTS: In total, 184 patients with pituitary adenomas were included. The postoperative patients with pituitary adenomas had a high level of fatigue. In total, 34 (18.5%) patients had low level of physical activity, 76(41.3%) patients had medium level of physical activity and 74 (40.2%) had high level of physical activity. Postoperative time, PSQI, physical activity level and gender were the influencing factors of fatigue in patients with pituitary adenomas (all P < 0.05). CONCLUSIONS: Postoperative patients with pituitary adenomas have a higher level of fatigue, and it is related to reduced sleep quality and activity. Relevant nursing measures should be taken according to the influencing factors of fatigue to reduce the fatigue of postoperative patients with pituitary adenomas.


Asunto(s)
Adenoma , Ejercicio Físico , Fatiga , Neoplasias Hipofisarias , Humanos , Masculino , Femenino , Neoplasias Hipofisarias/cirugía , Persona de Mediana Edad , Adulto , Encuestas y Cuestionarios , Adenoma/cirugía , Calidad del Sueño , Periodo Posoperatorio , Anciano , Sueño
17.
Geriatr Nurs ; 59: 48-59, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38986429

RESUMEN

In light of the ongoing global health crisis, the significance of leadership within the healthcare sector has intensified. Given this consideration, the significance of appropriate leadership styles cannot be overstated. The objective of this paper is to critically review published studies on leadership elements in the healthcare sector. Using Bibliometrix R package and VOS viewer, we conducted bibliometric and network analyses on publications retrieved from the Web of Science (WOS) database, with content analysis integrated throughout the paper to deepen understanding. Ultimately, 243 articles were identified as relevant. The findings revealed transformational leadership emerges as the most extensively discussed leadership style. 91% of the articles' theme focus on quantitative research methods. This study synthesizes the influencing factors of the three most frequently discussed leadership styles-transformational, authentic, and ethical leadership-emphasizing the importance of job satisfaction and organizational citizenship behavior. And provides direction for future research through thematic analysis.

18.
Angew Chem Int Ed Engl ; : e202412287, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206675

RESUMEN

The practical application of room-temperature sodium-sulfur (RT Na-S) batteries was severely hindered by inhomogeneous sodium deposition and notorious sodium polysulfides (NaPSs) shuttling. Herein, novel sodium thiotellurate (Na2TeS3) interfaces are constructed both on the cathode and anode for Na-S batteries to simultaneously address the Na dendritic growth and polysulfide shuttling. On the cathode side, a heterostructural sodium sulfide/sodium telluride embedded in a carbon matrix (Na2S/Na2Te@C) was rationally designed through a facile carbothermal reaction, where the Na2TeS3interface will be in-situ chemically obtained. Such an interface provides abundant electron/ion diffusion channels and ensures rich catalytic surfaces toward Na-S redox, which could significantly improve the utilization of active material and alleviate polysulfide shuttling in the cathode. On the anode side, the inevitable formation of soluble polytellurosulfides species will migrate on Na anode surface, finally constructing a compact and smooth solid-electrolyte Na2TeS3 interphase (SEI) layer. Such electrochemical formed Na2TeS3 interface can significantly enhance ionic transport and stabilize Na deposition, thus realizing dendrite-free Na-metal plating/stripping. Benefitting from these advantages, an anode-free cell fabricated with the Na2S/Na2Te@C cathode exhibits an ultrahigh initial discharge capacity of 634 mAh g-1 at 0.1 C, which could pave a new path to design high-performance cathodes for anode-free RT Na-S batteries.

19.
Small ; : e2307970, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054785

RESUMEN

Surface engineering offers opportunities for the design and synthesis of Pt-based alloyed electrocatalysts with high mass activity and resistance to CO poisoning, which is of great significance for methanol electrooxidation. Surface curvature regulation may endow electrocatalysts with enhanced atomic utilization and abundance of unsaturated atoms; however, a reliable synthetic route for controlled construction of tailorable curved surface is still lacking. Here, a colloidal-chemical method to synthesize two types of PtCu branched-structured electrocatalysts, where the concave curvature can be customized is reported. These studies show that, among various synthesis parameters, the concentration of CuCl2 ·2H2 O precursor is the key factor in manipulating the reaction kinetics and determining the concave surface curvature. Significantly, PtCu branched nanocrystals with long and sharp arms (PtCu BNCs-L), featuring a high concave surface curvature, exhibit remarkable activity and stability toward MOR, which is mainly attributed to advanced features of a highly concave surface and the synergistically bifunctional effect from introduced oxophilic Cu metal. In situ Raman spectroscopy and CO stripping test demonstrates weakened CO adsorption and accelerated CO removal on PtCu BNCs-L. This work highlights the importance of surface curvature, opening up an appealing route for the design and synthesis of advanced electrocatalysts with well-defined surface configurations.

20.
Small ; 19(12): e2205835, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634982

RESUMEN

It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high energy density cell. The traditional DMFC in mechanical assembly and its unbending property, however, prevent it from being employed in flexible electrical devices. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC-modified carbon cloth (TiC/CC) is used as supporting layer. Additionally, solid methanol fuels used in the manufacturing of flexible all-solid-state DMFC have the advantages of being tiny, light, and having high energy density. Furthermore, the DMFC's placement and bending angle have little effect on its performance, suggesting that DMFC is appropriate for flexible portable energy. The flexible all-solid-state DMFC's power density can reach 14.06 mW cm-2 , and after 50 bends at 60°, its voltage loss can be disregarded. The flexible all-solid DMFC has an energy density that is 777.78 Wh Kg-1 higher than flexible lithium-ion batteries, which is advantageous for the commercialization of flexible electronic products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA