Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 379, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34407754

RESUMEN

BACKGROUND: The decrease in Cunninghamia lanceolata (Lamb.) production on continuously planted soil is an essential problem. In this study, two-year-old seedlings of two cultivars (a normal cultivar, NC, and a super cultivar, SC) were grown in two types of soil (not planted (NP) soil; continuously planted (CP) soil) with three watering regimes, and the interactive effects on plant growth and physiological traits were investigated in a greenhouse experiment. The water contents of the soil in the control (CK) (normal water content), medium water content (MWC) and low water content (LWC) treatments reached 75-80 %, 45-50 % and 20-25 % of the field water capacity, respectively. RESULTS: The results indicated that the CP soil had a negative effect on growth and physiological traits and that the LWC treatment caused even more severe and comprehensive negative effects. In both cultivars, the CP soil significantly decreased the height increment (HI), basal diameter increment (DI), dry matter accumulation (DMA), net photosynthetic rate (Pn), total chlorophyll content (TChl), carotenoid content (Caro) and photosynthetic nitrogen use efficiency (PNUE). Compared to the NP soil, the CP soil also decreased the proline and soluble protein contents, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) and increased the nitrogen:phosphorus ratio in roots, stems and leaves. The LWC treatment decreased growth and photosynthesis, changed ecological stoichiometry, induced oxidative stress, promoted water use efficiency and damaged chloroplast ultrastructure. Significant increases in ascorbate peroxidase (APX), peroxidase (POD), soluble protein and proline contents were found in the LWC treatment. Compared with the NC, the SC was more tolerant to the CP soil and water stress, as indicated by the higher levels of DMA, Pn, and WUE. After exposure to the CP soil and watering regimes, the decreases in biomass accumulation and gas exchange were more pronounced. CONCLUSIONS: The combination of drought and CP soil may have detrimental effects on C. lanceolata growth, and low water content enhances the impacts of CP soil stress on C. lanceolata seedlings. The superiority of the SC over the NC is significant in Chinese fir plantation soil. Therefore, continuously planted soil can be utilized to cultivate improved varieties of C. lanceolata and maintain water capacity. This can improve their growth and physiological performance to a certain extent.


Asunto(s)
Adaptación Fisiológica , Cunninghamia/anatomía & histología , Cunninghamia/crecimiento & desarrollo , Cunninghamia/genética , Cunninghamia/metabolismo , Sequías , Suelo/química , Agua/metabolismo , China , Variación Genética , Genotipo
2.
Plants (Basel) ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38999601

RESUMEN

The ramet system is a typical structural type in the life history of clonal plants. This massive structure is formed by many similar ramets connected by underground rhizomes, which are independent and mutually influential. Therefore, the ramet system is unique to bamboo forests, and its role in the construction, maintenance, and productivity of bamboo populations is irreplaceable. Mulch management is a high-level cultivation model for bamboo forests that is used to cultivate bamboo shoots. However, the basic conditions of bamboo ramet systems in this managed model are poorly understood. This study analyzed the underground rhizome morphology, bud bank, and branching of bamboo ramets in a Phyllostachys praecox C.D. Chu et C.S. Chao 'Prevernalis' forest to explore the growth patterns of bamboo ramets in high-level management fields. In mulched bamboo forests, the bamboo rhizomes, distributed in intermediate positions of the bamboo ramet system, were long with many lateral buds and branches, and those at the initial and distal ends were short with few lateral buds and branches. The initial end of the ramet system reduced the ramet system, the intermediate part expanded the ramet system, and the distal end promoted ramet system regeneration. Owing to the continuous reduction, expansion, and renewal of ramet systems, the bamboo rhizome system demonstrates mobility and adaptability. This study found that a higher level of bamboo forest management increased the possibility of artificial fragmentation of the ramet system and that improving the efficiency of the ramet system was beneficial for maintaining its high vitality. Thus, this study provides a crucial reference for guiding the precise regulation of bamboo ramet systems in artificial bamboo forests.

3.
Heliyon ; 8(10): e10801, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36203902

RESUMEN

Tetrastigma hemsleyanum Diels & Gilg, an herbal medicinal plant, is planted widely in bamboo forests in southern China to promote economic benefits. Volatile compounds (VOCs) of T. hemsleyanum from different geographical regions are difficult to identify in field forests. In this study, VOCs from leaf samples of different geographical origins were analyzed using an electronic nose with 10 different sensors. Principal component analysis (PCA), partial least-squares regression (PLS), hierarchical cluster analysis (HCA), and radial basis function (RBF) neural networks were used to determine differences among different local samples. The results demonstrated that PCA achieved an accurate discrimination percentage of 91.31% for different samples and HCA separated the samples into different groups. The RBF neural network was successfully applied to predict samples with no specified localities. T. hemsleyanum samples from geographically close regions tended to group together, whereas those from distant geographical regions showed obvious differences. These results indicate that an electronic nose is an effective tool for detecting VOCs and discriminating the geographical origins of T. hemsleyanum. This study provides insights for further studies on the fast detection of VOCs from plants and effect of forests and plant herbal medicines on improving air quality.

4.
Front Plant Sci ; 12: 667964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249039

RESUMEN

Nutrient resorption can affect plant growth, litter decomposition, and nutrient cycling. Although the effects of nitrogen (N) and biochar fertilizers on soil nutrient concentrations and plant nutrient uptake have been studied, an understanding of how combined applications of N and biochar affect plant nutrient resorption in plantations is lacking. In this study, we applied N (0, 30, 60, and 90 kg N ha-1 yr-1 defined as N0, N30, N60, and N90, respectively) and biochar (0, 20, and 40 t biochar ha-1 defined as BC0, BC20, and BC40, respectively) to the soil of a Moso bamboo plantation. We investigated the effects of these treatments on N and phosphorus (P) resorption by young and mature bamboo plants, as well as the relationships between nutrient resorption and leaf and soil nutrient concentrations. Young bamboo showed significantly greater foliar N resorption efficiency (NRE) and P resorption efficiency (PRE) than mature bamboo. N addition alone significantly increased the N resorption proficiency (NRP) and P resorption proficiency (PRP) but significantly decreased the NRE and PRE of both young and mature bamboo. In both the N-free and N-addition treatments, biochar amendments significantly reduced the foliar NRE and PRE of young bamboo but had the opposite effect on mature bamboo. Foliar NRE and PRE were significantly negatively correlated with fresh leaf N and P concentrations and soil total P concentration but significantly positively correlated with soil pH. Our findings suggest that N addition inhibits plant nutrient resorption and alters the nutrient-use strategy of young and mature bamboo from "conservative consumption" to "resource spending." Furthermore, biochar amendment enhanced the negative effect of N addition on nutrient resorption in young bamboo but reduced the negative effect on that of mature bamboo under N-addition treatments. This study provides new insights into the combined effects of N and biochar on the nutrient resorption of Moso bamboo and may assist in improving fertilization strategies in Moso bamboo plantations.

5.
Environ Sci Pollut Res Int ; 27(2): 2301-2310, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31776906

RESUMEN

Bamboo forests are one of the most important forest resources in subtropical China. A pure, single-layer bamboo forest is considered an optimal habitat for intercropping medicinal herbs. Soil microorganisms have an important role in various ecological processes and respond quickly to environmental changes. However, changes in soil nutrients and microbial communities associated with agroforestry cultivation methods remain poorly documented. In the present study, a pure moso bamboo (Phyllostachys edulis) forest (Con) and three adjacent moso bamboo-based agroforestry (BAF) systems (moso bamboo-Paris polyphylla (BP), moso bamboo-Tetrastigma hemsleyanum (BT) and moso bamboo-Bletilla striata (BB)) were selected; and their soil chemical properties and bacterial communities were studied and compared to evaluate the effects of agroforestry on soil bacterial communities and the relationship between soil properties and bacterial communities in BAF systems. Results showed that compared with soils under the Con, soils under the BAF systems had more (p < 0.05) soil organic carbon (SOC) and available nitrogen (AN) but lower (p < 0.05) pH and available potassium (AK). In addition, compared with the Con system, the BB and BT systems had significantly greater (p < 0.05) available phosphorus (AP). Compared with that in the Con system, the Shannon index in the BAF systems was significantly greater (p < 0.05), but the Chao1 index not different. On the basis of relative abundance values, compared with the Con soils, the BAF soils had a significantly greater abundance of (p < 0.05) Bacteroidetes and Planctomyces but a significantly lower abundance of (p < 0.05) Verrucomicrobia, Gemmatimonadetes and Candidatus Xiphinematobacter. Moreover, compared with the Con system, the BB and BT systems had a greater (p < 0.05) abundance of Actinobacteria, Rhodoplanes, Candidatus Solibacter and Candidatus Koribacter. Redundancy analysis (RDA) revealed that soil pH, SOC and AP were significantly correlated with bacterial community composition. Results of this study suggest that intercropping medicinal herbs can result in soil acidification and potassium (K) depletion; thus, countermeasures such as applications of K fertilizer and alkaline soil amendments are necessary for BAF systems.


Asunto(s)
Carbono/análisis , Microbiota , Nutrientes/análisis , Plantas Medicinales , Carbono/química , China , Bosques , Nutrientes/química , Poaceae , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA