RESUMEN
Natural killer (NK) cells have become a powerful candidate for adoptive tumor immunotherapy, while their therapeutic efficacy in solid tumors remains unsatisfactory. Here, we developed a hybrid module with an injectable hydrogel and hydroxyapatite (HAp) nanobelts for the controlled delivery of NK cells to enhance the therapy of solid tumors. Surface-functionalized HAp nanobelts modified with agonistic antibodies against NKG2D and 4-1BB and cytokines IL-2 and IL-21 support survival and dynamic activation. Thus, the HAp-modified chitosan (CS) thermos-sensitive hydrogel not only improved the retention of NK cells for more than 20 days in vivo but also increased NK cell function by more than one-fold. The unique architecture of this biomaterial complex protects NK cells from the hostile tumor environment and improves antitumor efficacy. The generation of a transient inflammatory niche for NK cells through a biocompatible hydrogel reservoir may be a conversion pathway to prevent cancer recurrence of resectable tumors.
Asunto(s)
Hidrogeles , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Animales , Ratones , Hidrogeles/química , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Durapatita/química , Línea Celular Tumoral , Quitosano/química , Subfamilia K de Receptores Similares a Lectina de Células NK , Interleucinas/inmunología , Interleucina-2/inmunologíaRESUMEN
BACKGROUND & AIMS: Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS: Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS: Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS: Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS: Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/metabolismo , Células Asesinas Naturales/patología , Inmunoterapia , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Ligandos , PronósticoRESUMEN
Palmitoylation of viral proteins is crucial for host-virus interactions. In this study, we examined the palmitoylation of Japanese encephalitis virus (JEV) nonstructural protein 2A (NS2A) and observed that NS2A was palmitoylated at the C221 residue of NS2A. Blocking NS2A palmitoylation by introducing a cysteine-to-serine mutation at C221 (NS2A/C221S) impaired JEV replication in vitro and attenuated the virulence of JEV in mice. NS2A/C221S mutation had no effect on NS2A oligomerization and membrane-associated activities, but reduced protein stability and accelerated its degradation through the ubiquitin-proteasome pathway. These observations suggest that NS2A palmitoylation at C221 played a role in its protein stability, thereby contributing to JEV replication efficiency and virulence. Interestingly, the C221 residue undergoing palmitoylation was located at the C-terminal tail (amino acids 195 to 227) and is removed from the full-length NS2A following an internal cleavage processed by viral and/or host proteases during JEV infection. IMPORTANCE An internal cleavage site is present at the C terminus of JEV NS2A. Following occurrence of the internal cleavage, the C-terminal tail (amino acids 195 to 227) is removed from the full-length NS2A. Therefore, it was interesting to discover whether the C-terminal tail contributed to JEV infection. During analysis of viral palmitoylated protein, we observed that NS2A was palmitoylated at the C221 residue located at the C-terminal tail. Blocking NS2A palmitoylation by introducing a cysteine-to-serine mutation at C221 (NS2A/C221S) impaired JEV replication in vitro and attenuated JEV virulence in mice, suggesting that NS2A palmitoylation at C221 contributed to JEV replication and virulence. Based on these findings, we could infer that the C-terminal tail might play a role in the maintenance of JEV replication efficiency and virulence despite its removal from the full-length NS2A at a certain stage of JEV infection.
Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Proteínas no Estructurales Virales , Replicación Viral , Animales , Ratones , Línea Celular , Cisteína/metabolismo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Lipoilación , Serina/metabolismo , Proteínas no Estructurales Virales/metabolismo , VirulenciaRESUMEN
T-cell immunoglobulin and mucin domain-containing molecule 4 (Tim-4) is an immune checkpoint molecule, which involves in numerous inflammatory diseases. Tim-4 is mainly expressed on antigen-presenting cells. However, increasing evidence has shown that Tim-4 is also expressed on natural killer T (NKT) cells. The role of Tim-4 in maintaining NKT cell homeostasis and function remains unknown. In this study, we explored the effect of Tim-4 on NKT cells in acute liver injury. This study found that Tim-4 expression on hepatic NKT cells was elevated during acute liver injury. Tim-4 deficiency enhanced IFN-γ, TNF-α expression while impaired IL-4 production in NKT cells. Loss of Tim-4 drove NKT-cell effector lineages to be skewed to NKT1 subset. Furthermore, Tim-4 KO mice were more susceptible to α-Galactosylceramide (α-GalCer) challenge. In conclusion, our findings indicate that Tim-4 plays an important role in regulating homeostasis and function of NKT cells in acute liver injury. Therefore, Tim-4 might become a new regulator of NKT cells and a potential target for the therapy of acute hepatitis.
Asunto(s)
Homeostasis , Ratones Noqueados , Células T Asesinas Naturales , Animales , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Ratones , Homeostasis/inmunología , Galactosilceramidas/farmacología , Ratones Endogámicos C57BL , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Interleucina-4/metabolismo , Interleucina-4/inmunología , Interferón gamma/metabolismo , Interferón gamma/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , MasculinoRESUMEN
BACKGROUND AND AIMS: Natural killer (NK) cells are key players in tumor immunosurveillance, and metabolic adaptation manipulates their fate and functional state. The nicotinamide adenine dinucleotide (NAD + ) has emerged as a vital factor to link cellular metabolism and signaling transduction. Here, we identified NAD + metabolism as a central hub to determine the homeostasis and function of NK cells. APPROACH AND RESULTS: NAD + level was elevated in activated NK cells. NAD + supplementation not only enhanced cytokine production and cytotoxicity but also improved the proliferation and viability of NK cells. Intriguingly, the salvage pathway was involved in maintaining NAD + homeostasis in activated NK cells. Genetic ablation or pharmacological blockade of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD + salvage pathway, markedly destroyed the viability and function of NK cells. Mechanistically, NAD + salvage dictated the mitochondrial homeostasis and oxidative phosphorylation activity to support the optimal function of NK cells. However, in human HCC tissues, NAMPT expression and NAD + level were significantly down-regulated in tumor-infiltrating NK cells, which negatively correlated with patient survival. And lactate accumulation in the tumor microenvironment was at least partially responsible for the transcriptional repression of NAMPT in NK cells. Further, deficiency of Nampt in NK cells accelerated the growth of HCC and melanoma. Supplementation of the NAD + precursor nicotinamide mononucleotide (NMN) significantly improved NK antitumor response in both mouse and human cell-derived xenografts. CONCLUSIONS: These findings reveal NAD + salvage as an essential factor for NK-cell homeostasis and function, suggesting a potential strategy for invigorating NK cell-based immunotherapy.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Citocinas/metabolismo , Células Asesinas Naturales/metabolismo , Microambiente TumoralRESUMEN
Obesity is generally associated with low-grade inflammation. Adipose tissue macrophages (ATMs) orchestrate metabolic inflammation. The classical (M1-like) or alternative (M2-like) activation of ATMs is functionally coupled with the metabolic status of fat tissues. It has been found that T-cell immunoglobulin- and mucin-domain-containing molecule-4 (Tim-4) inhibits inflammation by regulating macrophages. However, the exact role of Tim-4 in macrophage polarization and obesity remains unknown. Here, we identified Tim-4 as a critical switch governing macrophage M1/M2 polarization and energy homeostasis. Tim-4 deletion led to spontaneous obesity in elder mice and promoted obesity severity of db/db mice. Obesity microenvironment enhanced the expression of Tim-4 in white adipose tissue and ATMs. In vitro, we detected an increase in M1-like cells and decrease in M2-like cells in both peritoneal macrophages and bone marrow-derived macrophages from Tim-4 knockout mice. Mechanistically, we demonstrated that Tim-4 promoted M2-like macrophages polarization via suppressing nuclear factor kappa B (NF-κB) signaling pathway. In addition, we found that Tim-4 promoted TLR4 internalization, which might contribute to regulation of NF-κB signaling. Collectively, these results indicated that Tim-4 maintained adipose tissue homeostasis by regulating macrophage polarization via NF-κB pathway, which would provide a new target for obesity intervention.
Asunto(s)
Tejido Adiposo , Macrófagos , Proteínas de la Membrana , Animales , Ratones , Homeostasis , Inmunoglobulinas/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Obesidad/metabolismo , Linfocitos T/metabolismo , Transducción de SeñalRESUMEN
Sorafenib resistance limits its survival benefit for treatment of hepatocellular carcinoma (HCC). Cholesterol metabolism is dysregulated in HCC, and its role in sorafenib resistance of HCC has not been fully elucidated. Aiming to elucidate this, in vitro and in vivo sorafenib resistant models were established. Sterol regulatory element binding transcription factor 2 (SREBF2), the key regulator of cholesterol metabolism, was activated in sorafenib resistant HepG2 and Huh7 cells. Knockdown of SREBF2 resensitized sorafenib resistant cells and xenografts tumors to sorafenib. Further study showed that SREBF2 positively correlated with StAR related lipid transfer domain containing 4 (STARD4) in our sorafenib resistant models and publicly available datasets. STARD4, mediating cholesterol trafficking, not only promoted proliferation and migration of HepG2 and Huh7 cells, but also increased sorafenib resistance in liver cancer. Mechanically, SREBF2 promoted expression of STARD4 by directly binding to its promoter region, leading to increased mitochondrial cholesterol levels and inhibition of mitochondrial cytochrome c release. Importantly, knockdown of SREBF2 or STARD4 decreased mitochondrial cholesterol levels and increased mitochondrial cytochrome c release, respectively. Moreover, overexpression of STARD4 reversed the effect of SREBF2 knockdown on mitochondrial cytochrome c release and sorafenib resistance. In conclusion, SREBF2 promotes STARD4 transcription, which in turn contributes to mitochondrial cholesterol transport and sorafenib resistance in HCC. Therefore, targeting the SREBF2-STARD4 axis would be beneficial to a subset of HCC patients with sorafenib resistance.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Citocromos c/metabolismo , Proteínas Portadoras , Colesterol/metabolismo , Homeostasis , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Proliferación Celular , Proteínas de Transporte de Membrana/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismoRESUMEN
The spatial organization of immune cells within the tumor microenvironment (TME) largely determines the anti-tumor immunity and also highly predicts tumor progression and therapeutic response. Tim-3 is a well-accepted immune checkpoint and plays multifaceted immunoregulatory roles via interaction with distinct Tim-3 ligands (Tim-3L), showing great potential as an immunotherapy target. However, the cell sociology mediated by Tim-3/Tim-3L and their contribution to tumor development remains elusive. Here, we analyzed the spatial distribution of Tim-3/Tim-3L in TME using multiplex fluorescence staining and revealed that despite the increased Tim-3 expression in various tumor-infiltrated lymphocytes, Tim-3+CD4+ cells were more accumulated in parenchymal/tumor region compared with stromal region and exhibited more close association with patient survival. Strikingly, CD4 T cells surrounding Tim-3L+ cells expressed higher Tim-3 than other cells in cancerous tissues. In vivo studies confirmed that depletion of CD4 T cells completely abrogated the inhibition of tumor growth and metastasis, as well as the functional improvement of CD8 T and NK, mediated by Tim-3 blockade, which was further validated in peripheral lymphocytes from patients with hepatocellular carcinoma. In conclusion, our findings unravel the importance of CD4 T cells in Tim-3/Tim-3L-mediated immunosuppression and provide new thoughts for Tim-3 targeted cancer immunotherapy.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Linfocitos T CD8-positivos , Carcinoma Hepatocelular/terapia , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Ligandos , Microambiente TumoralRESUMEN
The tumor suppressor p53 as an innate antiviral regulator contributes to restricting Japanese encephalitis virus (JEV) replication, but the mechanism is still unclear. The interferon-induced transmembrane protein 3 (IFITM3) is an intrinsic barrier to a range of virus infection, whether IFITM3 is responsible for the p53-mediated anti-JEV response remains elusive. Here, we found that IFITM3 significantly inhibited JEV replication in a protein-palmitoylation-dependent manner and incorporated into JEV virions to diminish the infectivity of progeny viruses. Palmitoylation was also indispensible for keeping IFITM3 from lysosomal degradation to maintain its protein stability. p53 up-regulated IFITM3 expression at the protein level via enhancing IFITM3 palmitoylation. Screening of palmitoyltransferases revealed that zinc finger DHHC domain-containing protein 1 (ZDHHC1) was transcriptionally up-regulated by p53, and consequently ZDHHC1 interacted with IFITM3 to promote its palmitoylation and stability. Knockdown of IFITM3 significantly impaired the inhibitory role of ZDHHC1 on JEV replication. Meanwhile, knockdown of either ZDHHC1 or IFITM3 expression also compromised the p53-mediated anti-JEV effect. Interestingly, JEV reduced p53 expression to impair ZDHHC1 mediated IFITM3 palmitoylation for viral evasion. Our data suggest the existence of a previously unrecognized p53-ZDHHC1-IFITM3 regulatory pathway with an essential role in restricting JEV infection and provide a novel insight into JEV-host interaction.
Asunto(s)
Aciltransferasas/metabolismo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Replicación Viral/fisiología , Células A549 , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/metabolismo , Encefalitis Japonesa/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Lipoilación , Células VeroRESUMEN
Sepsis is a life-threatening condition with limited therapeutic options, characterized as excessive systemic inflammation and multiple organ failure. Macrophages play critical roles in sepsis pathogenesis. Metabolism orchestrates homeostasis of macrophages. However, the precise mechanism of macrophage metabolism during sepsis remains poorly elucidated. In this study, we identified the key role of zinc fingers and homeoboxes (Zhx2), a ubiquitous transcription factor, in macrophage glycolysis and sepsis by enhancing 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3) expression. Mice with myeloid Zhx2-specific deletion (abbreviated as MKO) showed more resistance to cecal ligation and puncture and LPS-induced sepsis, exhibiting as prolonged survival, attenuated pulmonary injury, and reduced level of proinflammatory cytokines, such as TNF-α, IL-6, and IL-1ß. Interestingly, Zhx2 deletion conferred macrophage tolerance to LPS-induced glycolysis, accompanied by reduced proinflammatory cytokines and lactate. Consistently, treatment of glycolytic inhibitor 2-deoxyglucose almost completely abrogated the protection of mice from LPS-induced sepsis initiated by Zhx2 deletion in macrophages. RNA sequencing and chromatin immunoprecipitation assays confirmed that Zhx2 enhanced transcription of Pfkfb3, the glycolysis rate-limiting enzyme, via binding with Pfkfb3 promoter. Furthermore, Pfkfb3 overexpression not only rescued the reduction of macrophage glycolysis caused by Zhx2 deficiency, displaying as extracellular acidification rates and lactate production but also destroyed the resistance of mice to LPS-induced sepsis initiated by transfer of bone marrow-derived macrophages from MKO mice. These findings highlight the novel role of transcription factor Zhx2 in sepsis via regulating Pfkfb3 expression and reprogramming macrophage metabolism, which would shed new insights into the potential strategy to intervene sepsis.
Asunto(s)
Glucólisis , Proteínas de Homeodominio/metabolismo , Macrófagos/inmunología , Fosfofructoquinasa-2/metabolismo , Choque Séptico/inmunología , Choque Séptico/metabolismo , Animales , Ligadura , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Punciones , Choque Séptico/inducido químicamenteRESUMEN
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Lipogenesis has been considered as a critical player in HCC initiation and progression. However, the underlying mechanism is still not fully understood. Here, we identified zinc fingers and homeoboxes 2 (ZHX2), an HCC-associated tumor suppressor, as an important repressor of de novo lipogenesis. Ectopic expression of ZHX2 significantly inhibited de novo lipogenesis in HCC cells and decreased expression of FASN, ACL, ACC1, and SCD1. In accordance with this, ZHX2 was negatively associated with SREBP1c, the master regulator of de novo lipogenesis, in HCC cell lines and human specimens. Results from silencing and overexpression demonstrated that ZHX2 inhibited de novo lipogenesis and consequent HCC progression via repression of SREBP1c. Furthermore, treatment with the SREBP1c inhibitor fatostatin dampened the spontaneous formation of tumors in liver-specific Zhx2 knockout mice. Mechanistically, ZHX2 increased expression of miR-24-3p transcriptionally, which targeted SREBP1c and led to its degradation. In conclusion, our data suggest a novel mechanism through which ZHX2 suppresses HCC progression, which may provide a new strategy for the treatment of HCC. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas de Homeodominio/metabolismo , Lipogénesis/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Adulto , Anciano , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Proteínas de Homeodominio/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Persona de Mediana Edad , Piridinas/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Tiazoles/farmacología , Factores de Transcripción/genética , Triglicéridos/metabolismoRESUMEN
Initiation of hepatocellular carcinoma (HCC) by chronic hepatitis B virus (HBV) infection is a complex process that includes both oncogene activation and tumor suppressor inhibition. The HBV X (HBx) protein has an important and complex role in processes leading to HCC. We previously identified the mammalian Zinc fingers and homeoboxes 2 (ZHX2) gene as an HCC-associated tumor suppressor gene. In the present study, we investigated whether the oncogenic properties of HBV and, more specifically, HBx, involved ZHX2 silencing. Our data indicates that ZHX2 expression is significantly decreased in tumor tissues from HBV-positive HCC patients and livers from HBV transgenic mice. In vitro and in vivo studies confirmed that HBV-encoded proteins, particularly HBx, inhibits both the expression and tumor suppression properties of ZHX2. Further analyses identified miR-155, a well-known oncomiR in various cancers, as an important link between HBx and ZHX2 inhibition. Increased miR-155 levels were found in HBV-positive tumors, livers of HBV transgenic mice and HBx-overexpressing hepatoma cell lines. MiR-155 overexpression reduced ZHX2 levels via miR-155 seed sites in the ZHX2 3'UTR, whereas blocking miR-155 levels led to increased ZHX2 levels. Taken together, our data indicate that HCC-promoting properties of HBV may include ZHX2 silencing via a miR-155 dependent pathway and suggests a novel therapy for HBV-related HCC.
Asunto(s)
Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Proliferación Celular/genética , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/complicaciones , Proteínas de Homeodominio/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , MicroARNs/genética , Factores de Transcripción/metabolismo , Adulto , Anciano , Animales , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Silenciador del Gen , Proteínas de Homeodominio/genética , Humanos , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Persona de Mediana Edad , Factores de Riesgo , Transactivadores/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba , Proteínas Reguladoras y Accesorias ViralesRESUMEN
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, which has important impacts on the pig industry. PRRSV infection results in disruption of the swine leukocyte antigen class I (SLA-I) antigen presentation pathway. In this study, highly pathogenic PRRSV (HP-PRRSV) infection inhibited transcription of the ß2-microglobulin (ß2M) gene (B2M) and reduced cellular levels of ß2M, which forms a heterotrimeric complex with the SLA-I heavy chain and a variable peptide and plays a critical role in SLA-I antigen presentation. HP-PRRSV nonstructural protein 4 (Nsp4) was involved in the downregulation of ß2M expression. Exogenous expression of Nsp4 downregulated ß2M expression at both the mRNA and the protein level and reduced SLA-I expression on the cell surface. Nsp4 bound to the porcine B2M promoter and inhibited its transcriptional activity. Domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter were identified as essential for the interaction between Nsp4 and B2M These findings demonstrate a novel mechanism whereby HP-PRRSV may modulate the SLA-I antigen presentation pathway and provide new insights into the functions of HP-PRRSV Nsp4. IMPORTANCE PRRSV modulates the host response by disrupting the SLA-I antigen presentation pathway. We show that HP-PRRSV downregulates SLA-I expression on the cell surface via transcriptional inhibition of B2M expression by viral Nsp4. The interaction between domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter is essential for inhibiting B2M transcription. These observations reveal a novel mechanism whereby HP-PRRSV may modulate SLA-I antigen presentation and provide new insights into the functions of viral Nsp4.
Asunto(s)
Antígenos de Histocompatibilidad Clase II/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Microglobulina beta-2/genética , Animales , Línea Celular , Regulación hacia Abajo , Expresión Génica , Silenciador del Gen/inmunología , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Clase II/metabolismo , Interacciones Huésped-Patógeno , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Sus scrofa , Porcinos , Proteínas no Estructurales Virales , Microglobulina beta-2/metabolismoRESUMEN
Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), which is characterized by reproductive failure and respiratory disorders. The secretome of PRRSV-infected porcine alveolar macrophages (PAMs), which are the primary target cells of PRRSV, was analyzed by label-free quantitative proteomics to gain a profile of proteins secreted during PRRSV infection. A total of 95 secreted proteins with differentially expressed levels between PRRSV- and mock-infected PAMs was screened. Among these, the expression levels of 49 and 46 proteins were up-regulated and down-regulated, respectively, in PRRSV-infected cell supernatants, as compared with mock-infected cell supernatants. Bioinformatic analysis revealed that the differentially expressed proteins were enriched in several signaling pathways related to the immune and inflammatory responses, such as the Toll-like receptor signaling pathway and NF-kappa B signaling pathway, and involved in a great diversity of biological processes, such as protein binding and localization, as well as immune effector processes. In addition, PRRSV-infected cell supernatants induced significant expression of inflammatory cytokines in vascular endothelial cells. These findings suggest that the secreted proteins play potential roles in the host immune and inflammatory responses as well as PRRSV replication, thereby providing new insights into cell-to-cell communication during PRRSV infection.
Asunto(s)
Macrófagos Alveolares/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Proteoma/análisis , Proteómica/métodos , Animales , Células Cultivadas , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Síndrome Respiratorio y de la Reproducción Porcina/virología , Transducción de Señal , PorcinosRESUMEN
The vitamin K epoxide reductase complex subunit 1 (VKORC1), the rate-limiting enzyme for vitamin K recycling, is significantly down-regulated in the kidneys of urolithiasis patients. This study searched for direct evidence to define the inhibitory activity of VKORC1 against calcium oxalate (CaOx) crystal formation. In the experiment of VKORC1 overexpression, HK-2 cells were transfected with the pFLAG-CMV-7.1-VKORC1 plasmid as a pFLAG-CMV-7.1-VKORC1 transfection group or the pFLAG-CMV-7.1 plasmid as a pFLAG-CMV-7.1 control group. In the experiment of VKORC1 knockdown, HK-2 cells were transfected with the PGPU6/GFP/Neo-VKORC1shRNA-2 as a PGPU6/GFP/Neo-VKORC1shRNA-2 transfection group or the PGPU6/GFP/Neo-shRNA-NC plasmid as a PGPU6/GFP/Neo-shRNA-NC control group. The expression of VKORC1 in HK-2 cells was detected by real-time quantitative PCR and Western blotting. The CaOx crystal formation was observed under the laser-scanning confocal microscope. It was found that the expression levels of VKORC1 mRNA and protein were significantly higher in the pFLAG-CMV-7.1-VKORC1 transfection group than in the pFLAG-CMV-7.1 control group (P<0.01). The number of CaOx crystals in HK-2 cells incubated in fluorescently labeled CaOx monohydrate (COM) crystal medium for 48 h was 14±4 per field (100×) in the pFLAG-CMV-7.1-VKORC1 transfection group and 26±5 per field (100×) in the pFLAG-CMV-7.1 control group respectively under the laser-scanning confocal microscope. The amount of CaOx crystal aggregation and formation in the pFLAG-CMV-7.1-VKORC1 transfection group was significantly reduced as compared with the pFLAG-CMV-7.1 control group (P<0.05). The expression levels of VKORC1 mRNA and protein were significantly lower in the PGPU6/GFP/Neo-VKORC1shRNA-2 transfection group than in the PGPU6/GFP/Neo-shRNA-NC control group (P<0.05). The number of CaOx crystals in HK-2 cells incubated in fluorescently labeled COM crystal medium was 65±11 per field (100×) in the PGPU6/GFP/Neo-VKORC1shRNA-2 transfection group and 24±6 per field (100×) in the PGPU6/GFP/Neo-shRNA-NC control group respectively under the laser-scanning confocal microscope. The amount of CaOx crystal aggregation and formation in the PGPU6/GFP/Neo-VKORC1shRNA-2 transfection group was significantly increased as compared with the PGPU6/GFP/Neo-shRNA-NC control group (P<0.05). These findings suggested that the VKORC1 protein could inhibit CaOx salt crystallization, adhesion and aggregation. This research would help us to understand the mechanisms involving the interaction between crystallization and epithelial cells and the formation of CaOx.
Asunto(s)
Oxalato de Calcio/química , Expresión Génica , Vitamina K Epóxido Reductasas/genética , Apoptosis/efectos de los fármacos , Western Blotting , Oxalato de Calcio/metabolismo , Oxalato de Calcio/farmacología , Línea Celular , Cristalización , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Confocal , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Transfección , Vitamina K Epóxido Reductasas/metabolismoRESUMEN
OBJECTIVE: Virus infection is a major threat to human health and remains a significant cause of death to date. Macrophages are important innate immune cells that exhibit indispensable roles in controlling virus replication. It was recently reported that metabolic adaption determines the functional state of macrophages. Thus, to further unravel the crucial factors involving in metabolic adaption of macrophages might provide the potential candidates for optimizing their anti-viral capabilities. METHODS: RT-PCR, Western blotting, virus plaque assay and HE were used to evaluate the viral load in virus-infected Tipe1M-KO and Tipe1f/f mice or cultured macrophages. RNA sequencing were performed with Tipe1M-KOor Tipe1f/f BMDMs upon virus infection. Extracellular acidification rate (ECAR) was applied for analyzing glycolysis rate in virus-infected BMDMs. Co-immunoprecipitation (Co-IP) assay and LC-MS/MS were used to determine the potential interacting proteins of TIPE1. RESULTS: TIPE1 level was significantly reduced in BMDMs infected with either RNA viruses or DNA virus. Deficiency of Tipe1 in macrophages increased viral load and aggravated tissue damage. Mechanistically, TIPE1 suppressed the glycolytic capacity of macrophages through interacting with PKM2 and promoting its ubiquitination degradation, which in turn decreased HIF1α transcription and viral replication in macrophages. CONCLUSIONS: TIPE1 functions as a novel regulator for metabolic reprogramming and virus infection in macrophages.
Asunto(s)
Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Péptidos y Proteínas de Señalización Intracelular , Macrófagos , Proteínas de la Membrana , Proteínas de Unión a Hormona Tiroide , Replicación Viral , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Retroalimentación Fisiológica , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Macrófagos/virología , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Piruvato Quinasa , Ubiquitinación , Replicación Viral/genéticaRESUMEN
Resistance to PD-1 blockade in onco-immunotherapy greatly limits its clinical application. T cell immunoglobulin and mucin domain containing-3 (Tim-3), a promising immune checkpoint target, is cleaved by ADAM10/17 to produce its soluble form (sTim-3) in humans, potentially becoming involved in anti-PD-1 resistance. Herein, serum sTim-3 upregulation was observed in non-small cell lung cancer (NSCLC) and various digestive tumors. Notably, serum sTim-3 is further upregulated in non-responding patients undergoing anti-PD-1 therapy for NSCLC and anti-PD-1-resistant cholangiocarcinoma patients. Furthermore, sTim-3 overexpression facilitates tumor progression and confers anti-PD-1 resistance in multiple tumor mouse models. Mechanistically, sTim-3 induces terminal T cell exhaustion and attenuates CD8+ T cell response to PD-1 blockade through carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1). Moreover, the ADAM10 inhibitor GI254023X, which blocks sTim-3 production, reduces tumor progression in Tim-3 humanized mice and reverses anti-PD-1 resistance in human tumor-infiltrating lymphocytes (TILs). Overall, human sTim-3 holds great predictive and therapeutic potential in onco-immunotherapy.
Asunto(s)
Biomarcadores de Tumor , Linfocitos T CD8-positivos , Resistencia a Antineoplásicos , Receptor 2 Celular del Virus de la Hepatitis A , Receptor de Muerte Celular Programada 1 , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/antagonistas & inhibidores , Humanos , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Pronóstico , Biomarcadores de Tumor/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Femenino , Masculino , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteína ADAM10/metabolismo , Ratones Endogámicos C57BL , Agotamiento de Células TRESUMEN
Inadequate ß-cell mass and insulin secretion are essential for the development of type 2 diabetes (T2D). TNF-α-induced protein 8-like 1 (Tipe1) plays a crucial role in multiple diseases, however, a specific role in T2D pathogenesis remains largely unexplored. Herein, Tipe1 as a key regulator in T2D, contributing to the maintenance of ß cell homeostasis is identified. The results show that the ß-cell-specific knockout of Tipe1 (termed Ins2-Tipe1BKO) aggravated diabetic phenotypes in db/db mice or in mice with high-fat diet-induced diabetes. Notably, Tipe1 improves ß cell mass and function, a process that depends on Gαs, the α subunit of the G-stimulating protein. Mechanistically, Tipe1 inhibited the K48-linked ubiquitination degradation of Gαs by recruiting the deubiquitinase USP5. Consequently, Gαs or cAMP agonists almost completely restored the dysfunction of ß cells observed in Ins2-Tipe1BKO mice. The findings characterize Tipe1 as a regulator of ß cell function through the Gαs/cAMP pathway, suggesting that Tipe1 may emerge as a novel target for T2D intervention.
Asunto(s)
Proliferación Celular , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ratones Noqueados , Transducción de Señal , Animales , Ratones , Células Secretoras de Insulina/metabolismo , Transducción de Señal/genética , Proliferación Celular/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Secreción de Insulina/genética , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Masculino , Humanos , Ratones Endogámicos C57BL , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genéticaRESUMEN
According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.