Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(11): 3133-6, 2013 Nov.
Artículo en Zh | MEDLINE | ID: mdl-24555397

RESUMEN

The present paper determined the As concentration in shell sand of the shell ridge islands by hydride generation atomic fluorescence spectrometry, studied the distribution of As in shell sand of the shell ridge islands, analysed the correlations of As with other nutrient elements, and discussed the probably influencing factors affecting the As concentration and distribution in shell sand. The results showed that the range of the arsenic concentration in shell sand is between 0.78 and 8.76 mg x kg(-1), the average concentration is 3.11 mg x kg(-1), and this indicated that the As contamination of the shell ridge island is in clean level. The As concentration of the shell sand has a increasing trend followed by the increase with profile depth or the decrease with the particle size, and the difference in As concentrations in shell sand of different particle sizes reached the significant level (p < or = 0.05). The As concentration in shell sand has a very significant positive correlation with the concentrations of Cu, Zn and Mn as well as the TP and TK, whereas the correlations between As and TN or Fe are not significant. The pollutant of As in the shell sand mainly comes from the absorption and fixation by shell sand from the environment but not the accumulation of the shell organism during their growing up.

2.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2628-2634, 2022 Oct.
Artículo en Zh | MEDLINE | ID: mdl-36384596

RESUMEN

Understanding the changes and influencing factors of soil organic carbon density (SOCD) during the conversion of uncultivated natural soil to croplands is of great significance for the assessment of carbon sequestration in arid areas. In this study, we compared SOCD in the uncultivated soil and that in croplands with different cultivation years (2-5, 12-15, 25-30, 40-50 years) in the Northeastern Ulan Buh Desert. The change of SOCD and its influencing factors at 0-2 m soil depth during the conversion of uncultivated natural soil to croplands were explored by the method of replacing time with space. The results showed that SOCD at the shallow soil depth (0-0.4 m) in croplands increased continuously with cultivation years, but basically at low levels (0.990-1.983 kg·m-2). The SOCD at deep soil (1.2-2 m) increased in the croplands with longer cultivation years (25-30 and 40-50 years), whereas no obvious change trends in both the croplands with shorter cultivation years (2-5 and 12-15 years) and the uncultivated natural soil. The SOCD at deep soil (1.2-2 m) were relatively large (28.9%-38.6%) of the 0-2 m soil depth of uncultivated natural soil and croplands with different cultivation years. The vertical distribution of SOCD in croplands with different cultivation years were well fitted by quadratic functions (with R2 ranging from 0.757 to 0.972). It was noteworthy that soil clay and silt contents had dominant influences on SOCD at all the soil profile (0-2 m), and that cultivation years mainly contributed to the accumulation of SOC at the shallow soil (0-0.4 m).


Asunto(s)
Carbono , Suelo , Carbono/análisis , Agricultura , China , Productos Agrícolas
3.
Ying Yong Sheng Tai Xue Bao ; 32(1): 369-376, 2021 Jan.
Artículo en Zh | MEDLINE | ID: mdl-33477246

RESUMEN

Soil aggregate, as a basic component of soils, plays an important role in improving soil structure and enhancing soil organic carbon (SOC) sequestration. The special soil properties induced by salinization, such as high ion concentrations (mainly Na+), shortage of organic material and bad condition of microbe, inhibit the formation and stability of soil aggregate. Therefore, it is important and meaningful to explore the dynamics of aggregate in salinized soils. Coastal wetland and inland salinized marsh wetland are important salinized ecosystems. We systematically summarized the progress and achievements on soil aggregate in salinized agriculture and wetland ecosystems. Agricultural practices, such as organic and/or inorganic soil amendment application, tillage practice, vegetation type, straw return and saline water irrigation, advance the formation and stability of aggregate and aggregate-associated organic carbon in salinized soils. We discussed the problems and deficiency in the present studies of aggregate and aggregate-associated carbon in salinized soils as well as the research aspects and hot topics in the future. This review would be helpful for comprehensively understanding the advances and development directions on aggregate in salinized soils.


Asunto(s)
Carbono , Suelo , Agricultura , Secuestro de Carbono , Ecosistema
4.
Sci Total Environ ; 767: 144340, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33429273

RESUMEN

Phragmites australis and Chloris virgata are native, dominant, salt-tolerant grass species that grow in the Yellow River Delta, China, and have potential applications in the phytoremediation of petroleum-polluted saline soil. The characteristics of endophytic bacterial communities of Phragmites australis and Chloris virgata and their functions in hydrocarbon degradation and plant growth promotion have been studied using both high-throughput sequencing and conventional microbial techniques. Through 16S rRNA gene amplicon sequencing, we found five bacterial phyla that were dominant among the endophytic bacterial communities of the two grass species, including Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Tenericutes. The phylum Proteobacteria was common among the endophytic bacterial communities of the two grass species. The diversity in the endophytic bacterial community of Chloris virgata was generally higher than that in the community of Phragmites australis. Thirty-eight hydrocarbon-degrading endophytic bacteria were isolated from the two grasses via culturing techniques. Based on phylogenetic analyses, the bacterial isolates were classified into the phyla Proteobacteria, Firmicutes, and Actinobacteria. The majority of strains belonged to the genera Bacillus and Pseudomonas. More than 70% of the isolates of hydrocarbon-degrading endophytes exhibited the ability to stimulate plant growth. These isolates mainly belonged to Bacillus sp., Pseudomonas sp., Beijerinckia sp., Serratia sp., Acinetobacter sp., Microbacterium sp., and Rhizobium sp. Altogether, the present study revealed that Phragmites australis and Chloris virgata growing on petroleum-polluted saline soil in the Yellow River Delta harbor several diverse species of endophytic bacteria and serve as novel sources of beneficial bacteria and hydrocarbon degradation.


Asunto(s)
Poaceae , Ríos , Bacterias/genética , China , Filogenia , ARN Ribosómico 16S/genética
5.
Sci Rep ; 10(1): 9567, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533025

RESUMEN

This study investigated the physiological and ecological changes in P. sepium Bunge and elucidated the physiological regulatory mechanisms underlying the adaptation of P. sepium to drought stress in shell sand. Drought stress led to a significant decrease in the net photosynthesis rate (Pn) and respiration rate of leaves and a decrease in low-intensity light-use efficiency (LUE) and light ecological amplitude. An increase in drought stress led to a considerable decrease in the photosynthetic electron transport rate in the P. sepium leaves and a significant increase in the amount of light energy dissipated as heat. In addition, the photosynthesis process suffered from severe photoinhibition. P. sepium plants counteracted the effects of drought stress primarily by increasing their peroxidase (POD) activity and by regulating membrane lipid peroxidation by secreting greater numbers of osmotic adjustment substances (proline (Pro) and soluble sugars (Ss)) and malondialdehyde (MDA). As drought stress increased, both the stem sap flow rate and the cumulative sap flow of P. sepium decreased considerably. P. sepium Bunge adapts to drought stress through interregulatory activity between photosynthesis, water-related physiological activities, and physiological and biochemical processes, and this species exhibits relatively high adaptive plasticity to drought.


Asunto(s)
Sequías , Periploca/fisiología , Fotosíntesis , Fenómenos Fisiológicos de las Plantas , Arena/química , Estrés Fisiológico , Adaptación Fisiológica , China , Ecosistema , Peroxidación de Lípido , Malondialdehído/metabolismo , Prolina/metabolismo , Ríos
6.
Ying Yong Sheng Tai Xue Bao ; 31(9): 3101-3110, 2020 Sep 15.
Artículo en Zh | MEDLINE | ID: mdl-33345512

RESUMEN

We examined the effects of biochar and effective mircoorganisms (EM) application on growth and photosynthetic characteristics of Sesbania cannabina in the Yellow River Delta, by a pot experiment with different EM treatments (without EM addition, EM-; with EM addition, EM+) and a gradient of biochar treatments (0, B0; 0.5%, B1; 1.5%, B2; 3%, B3; biochar weight/soil weight). The growth parameters, photosynthetic light response curve and chlorophyll fluorescence characteristics of S. cannabina were measured. The results showed that the EM+B3 treatment had the best effect among all the treatments. Compared with the EM-B0 treatment, the EM+B3 treatment increased height, stem diameter, and total biomass by 69.5%, 90.0% and 141.1%, respectively. Biochar and EM significantly improved photosynthetic capacity. Compared with the EM-B0 treatment, the EM+B3 treatment significantly enhanced the maximum light response of net photosynthetic rate, transpiration rate, water use efficiency, and stomatal conductance by 93.8%, 35.1%, 43.4%, and 34.8%, respectively. Biochar and EM improved the parameters of chlorophyll fluorescence. Compared with the EM-B0 treatment, the EM+B3 treatment significantly increased the potential photochemical efficiency, the actual photochemical efficiency, the apparent electron transport rate and the non-photochemical quenching coefficient by 25.8%, 31.5%, 37.2%, and 56.8%, respectively. The parameters of growth, photosynthesis and chlorophyll fluorescence increased with the increasing biochar under EM+ treatments, whereas the B3 treatment had negative effect under EM- treatments. The co-addition of EM and 3% biochar (EM+B3) could improve the photosynthetic capacity and chlorophyll fluorescence characteristics of S. cannabina, broaden light ecological amplitude, boost the water retention and drought resistance property, and promote the growth of S. cannabina.


Asunto(s)
Sesbania , Suelo , Álcalis , Carbón Orgánico , China , Clorofila , Fluorescencia , Fotosíntesis , Hojas de la Planta , Ríos
7.
Ying Yong Sheng Tai Xue Bao ; 31(4): 1323-1332, 2020 Apr.
Artículo en Zh | MEDLINE | ID: mdl-32530208

RESUMEN

Yellow River Delta is an important distribution area of coastal saline-alkali land in China. Revegetation is the main technology for ecological restoration during saline-alkali land amelioration. To explore the effects of different vegetation types on soil improvement in saline-alkali land and get the suitable model in the Yellow River Delta, four tree-grass compound models, Salix americana+Distichlis spicata, S. matsudana+D. spicata, Tamarix chinensis+Medicago sativa, and Fraxinus chinensis+T. chinensis+M. sativa, were set up, with pure S. americana forest as the control. Twenty indicators, including soil moisture physical parameters, saline-alkali content, soil nutrient contents, and microorganism quantity etc. were measured. Principal component analysis, cluster analysis and fuzzy mathematics were used to evaluate soil modification effect of different vegetation combinations. The results showed that all compound models significantly improved soil physical and che-mical properties in coastal saline-alkali land by increasing soil porosity, soil water storage, soil organic matter content, available nutrient content and soil microorganism quantity and reducing soil density. Among all the models, the tree-shrub-grass mixed model of F. chinensis+T. chinensis+M. sativa was the most effective in inhibiting salt and alkali stress and increasing soil nutrients and microorganism abundance, whereas the tree-grass mixed model of S. matsudana+D. spicata was the most effective in improving soil water physical properties. The combined effects of different vegetation patterns on soil amelioration in coastal saline-alkali land of the Yellow River Delta were arranged in order of F. chinensis+T. chinensis+M. sativa> S. matsudana+D. spicata> S. americana+D. spicata> T. chinensis+M. sativa.


Asunto(s)
Suelo , Tamaricaceae , Álcalis , China , Ríos
8.
Front Microbiol ; 10: 991, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134029

RESUMEN

Hydrocarbon-degrading and plant-growth-promoting bacterial endophytes have proven useful for facilitating the phytoremediation of petroleum-contaminated soils with high salinity. In this study, we identified Bacillus safensis strain ZY16 as an endophytic bacterium that can degrade hydrocarbons, produce biosurfactants, tolerate salt, and promote plant growth. The strain was isolated from the root of Chloris virgata Sw., a halotolerant plant collected from the Yellow River Delta. ZY16 survived in Luria-Bertani (LB) broth with 0-16% (w/v) sodium chloride (NaCl) and grew well in LB broth supplemented with 0-8% NaCl, indicating its high salt tolerance. The endophytic strain ZY16 effectively degraded C12-C32 n-alkanes of diesel oil effectively, as well as common polycyclic aromatic hydrocarbons under hypersaline conditions. For example, in mineral salts (MS) liquid medium supplemented with 6% NaCl, ZY16 degraded n-undecane, n-hexadecane, n-octacosane, naphthalene, phenanthrene, and pyrene, with degradation percentages of 94.5, 98.2, 64.8, 72.1, 59.4, and 27.6%, respectively. In addition, ZY16 produced biosurfactant, as confirmed by the oil spreading technique, surface tension detection, and emulsification of para-xylene and paraffin. The biosurfactant production ability of ZY16 under hypersaline conditions was also determined. Moreover, ZY16 showed plant-growth-promoting attributes, such as siderophore and indole-3-acetic acid production, as well as phosphate solubilization. To assess the enhanced phytoremediation of saline soils polluted by hydrocarbons and the plant-growth-promotion ability of ZY16, a pot trial with and without inoculation of the endophyte was designed and performed. Inoculated and non-inoculated plantlets of C. virgata Sw. were grown in oil-polluted saline soil, with oil and salt contents of 10462 mg/kg and 0.51%, respectively. After 120 days of growth, significant enhancement of both the aerial and underground biomass of ZY16-inoculated plants was observed. The soil total petroleum hydrocarbon degradation percentage (a metric of phytoremediation) after incubation with ZY16 was 63.2%, representing an elevation of 25.7% over phytoremediation without ZY16 inoculation. Our study should promote the application of endophytic B. safensis ZY16 in phytoremediation by extending our understanding of the mutualistic interactions between endophytes and their host plants.

9.
Ying Yong Sheng Tai Xue Bao ; 24(6): 1551-8, 2013 Jun.
Artículo en Zh | MEDLINE | ID: mdl-24066539

RESUMEN

Taking the Tamarix chinensis secondary shrubs in Laizhou Bay of Yellow River Delta as test objects, and by using synthetic factor method, this paper studied the main factors causing the lowly efficiency of T. chinensis secondary shrubs as well as the main parameters for the classification of lowly efficient T. chinensis secondary shrubs. A total of 24 indices including shrubs growth and soil physical and chemical properties were selected to determine the main affecting factors and parameters in evaluating and classifying the lowly efficient shrubs. There were no obvious correlations between the indices reflecting the shrubs growth and soil quality, and thus, only using shrub growth index to reflect the lowly efficiency level of T. chinensis was not enough, and it would be necessary to combine with soil quality factors to make a comprehensive evaluation. The principal factors reflecting the quality level of lowly efficient T. chinensis shrubs included soil salt content and moisture content, stand age, single tree's aboveground stem, leaf biomass, and basal diameter, followed by soil density, porosity, and soil nutrient status. The lowly efficient T. chinensis shrubs in the Bay could be classified into five types, namely, shrub with growth potential, slightly low quality shrub, moderately lowly efficient shrub, moderately low quality and lowly efficient shrub, and seriously low quality and lowly efficient shrub. The main features, low efficiency causes, and management measures of these shrubs were discussed based on the mean cluster value.


Asunto(s)
Suelo/química , Tamaricaceae/crecimiento & desarrollo , Álcalis/análisis , Bahías , Biomasa , China , Ecosistema , Tallos de la Planta/química , Control de Calidad , Ríos , Sales (Química)/análisis , Agua/análisis
10.
Ying Yong Sheng Tai Xue Bao ; 18(1): 30-4, 2007 Jan.
Artículo en Zh | MEDLINE | ID: mdl-17396495

RESUMEN

With two years old Wisteria sinensis as test material, this paper measured the light response of its leaves net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) under different soil moisture conditions, aimed to ascertain the optimal soil moisture and light conditions of W. sinensis growth. The results showed that the Pn, Tr and WUE had evident threshold responses to the variations of soil moisture and light intensity. To maintain the normal growth and higher levels P. and WUE of W. sinensis, soil volumetric moisture content (Wr) and relative moisture content (Wv) should be within the range of 15.3%-26.5% and 46.4%-80.3%, and the optimal Wv and Wr were 23.3% and 70.6%, respectively. W. sineasis leaves had stronger adaptability to light conditions. When the photosynthetic active radiation (PAR) was 600-1600 micromol x m(-2) x s(-1), the Pn and WUE were at higher level, and the light saturation points of Pn and WUE were all at about 800-1000 x micromol x m(-2) x s(-1). The appearance of non-stomatal limit was significantly correlated with soil moisture and light intensity. When W, ranged from 18.4% to 26.5%, the decline of Pn was mainly caused by stomatal limit rather than PAR. Out of this range, Pn was obviously affected by PAR, and the critical turning point of PAR was observed with the change from stomatal limit to non-stomatal limit. The minimal values of Wv and Wr for the normal growth of W. sinensis were 11.9% and 36.1%, respectively, and the maximal PAR was 1000 micromol x m(-2) x s(-1), the critical point of detriment in leaf photosynthetic organ.


Asunto(s)
Luz , Suelo/análisis , Agua/análisis , Wisteria/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA