Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 118(6): 1972-1990, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506334

RESUMEN

Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lípidos , Oryza , Proteínas de Plantas , Factores de Transcripción , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Lípidos/biosíntesis , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
Plant Cell Environ ; 47(5): 1526-1542, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251320

RESUMEN

Zinc (Zn) deficiency is the most prevalent micronutrient disorder in rice and leads to delayed development and decreased yield. Nevertheless, despite its primary importance, how rice responds to Zn deficiency remains poorly understood. This study presents genetic evidence supporting the crucial role of OsbZIP48 in regulating rice's response to Zn deficiency, consistent with earlier findings in the model plant Arabidopsis. Genetic inactivation of OsbZIP48 in rice seedlings resulted in heightened sensitivity to Zn deficiency and reduced Zn translocation from roots to shoots. Consistently, OsbZIP48 was constitutively expressed in roots, slightly induced by Zn deficiency in shoots and localized into nuclei induced by Zn deficiency. Comparative transcriptome analysis of the wild-type plants and osbzip48 mutant grown under Zn deficiency enabled the identification of OsbZIP48 target genes, including key Zn transporter genes (OsZIP4 and OsZIP8). We demonstrated that OsbZIP48 controlled the expressions of these genes by directly binding to their promoters, specifically to the Zn deficiency response element motif. This study establishes OsbZIP48 as a critical transcription factor in rice's response to Zn deficiency, offering valuable insights for developing Zn-biofortified rice varieties to combat global Zn limitation.


Asunto(s)
Arabidopsis , Oryza , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oryza/metabolismo , Zinc/metabolismo , Perfilación de la Expresión Génica , Arabidopsis/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Adv Sci (Weinh) ; 11(10): e2306653, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145364

RESUMEN

Polyunsaturated fatty acids (PUFAs) are essential nutrients for all living organisms. PUFA synthesis is mediated by Δ12 desaturases in plants and microorganisms, whereas animals usually obtain PUFAs through their diet. The whitefly Bemisia tabaci is an extremely polyphagous agricultural pest that feeds on phloem sap of many plants that do not always provide them with sufficient PUFAs. Here, a plant-derived Δ12 desaturase gene family BtFAD2 is characterized in B. tabaci and it shows that the BtFAD2-9 gene enables the pest to synthesize PUFAs, thereby significantly enhancing its fecundity. The role of BtFAD2-9 in reproduction is further confirmed by transferring the gene to Drosophila melanogaster, which also increases the fruit fly's reproduction. These findings reveal an extraordinary evolutionary scenario whereby a phytophagous insect acquired a family of plant genes that enables it to synthesize essential nutrients, thereby lessening its nutritional dependency and allowing it to feed and reproduce on many host plants.


Asunto(s)
Ácido Graso Desaturasas , Hemípteros , Animales , Ácido Graso Desaturasas/genética , Hemípteros/genética , Drosophila melanogaster , Ácidos Grasos Insaturados , Estearoil-CoA Desaturasa , Reproducción
4.
Sci Adv ; 10(5): eadi3105, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306427

RESUMEN

Nitrogen is an essential element for all life on earth. Nitrogen metabolism, including excretion, is essential for growth, development, and survival of plants and animals alike. Several nitrogen metabolic processes have been described, but the underlying molecular mechanisms are unclear. Here, we reveal a unique process of nitrogen metabolism in the whitefly Bemisia tabaci, a global pest. We show that it has acquired two bacterial uricolytic enzyme genes, B. tabaci urea carboxylase (BtUCA) and B. tabaci allophanate hydrolase (BtAtzF), through horizontal gene transfer. These genes operate in conjunction to not only coordinate an efficient way of metabolizing nitrogenous waste but also control B. tabaci's exceptionally flexible nitrogen recycling capacity. Its efficient nitrogen processing explains how this important pest can feed on a vast spectrum of plants. This finding provides insight into how the hijacking of microbial genes has allowed whiteflies to develop a highly economic and stable nitrogen metabolism network and offers clues for pest management strategies.


Asunto(s)
Hemípteros , Animales , Hemípteros/genética , Hemípteros/metabolismo , Hemípteros/microbiología , Genes Bacterianos , Plantas/genética , Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA