Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; : e2307293, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047540

RESUMEN

Molybdenum disulfide (MoS2 ) has gained significant attention as a promising catalyst for hydrogen evolution reaction (HER). The catalytic performance of MoS2 can be enhanced by either altering its structure or regulating external conditions. In this study, a novel approach combining the introduction of sulfur vacancy (VS ) and biaxial tensile strain to create more active sites and modulate the band structure of monolayer MoS2 is proposed. To achieve the desired strain level, nano-cones (NCs) array substrates facilely fabricated by dip-pen nanolithography (DPN) are employed. The magnitude of the applied tensile strain can be finely tuned via adjusting the height of the NCs. Furthermore, on-chip electrochemical devices are constructed based on artificial structures, enabling precise optimization of HER performance of MoS2 through the synergistic effect of VS and strain. Combined with the d-band theory, it reveals that the HER properties of VS -MoS2 are highly dependent on the degree of tensile strain. This study presents a promising avenue for the design and preparation of high-performance 2D catalysts for energy conversion and storage applications.

2.
ACS Nano ; 18(2): 1531-1542, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164912

RESUMEN

Nanomedicine is promising for disease prevention and treatment, but there are still many challenges that hinder its rapid development. A major challenge is to efficiently seek candidates with the desired therapeutic functions from tremendously available materials. Here, we report an integrated computational and experimental framework to seek alloy nanoparticles from the Materials Project library for antibacterial applications, aiming to learn the inverse screening concept from traditional medicine for nanomedicine. Because strong peroxidase-like catalytic activity and weak toxicity to normal cells are the desired material properties for antibacterial usage, computational screening implementing theoretical prediction models of catalytic activity and cytotoxicity is first conducted to select the candidates. Then, experimental screening based on scanning probe block copolymer lithography is used to verify and refine the computational screening results. Finally, the best candidate AuCu3 is synthesized in solution and its antibacterial performance over other nanoparticles against S. aureus and E. coli. is experimentally confirmed. The results show the power of inverse screening in accelerating the research and development of antibacterial nanomedicine, which may inspire similar strategies for other nanomedicines in the future.


Asunto(s)
Nanomedicina , Nanopartículas , Nanomedicina/métodos , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA