Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
PLoS Biol ; 21(7): e3002199, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37486903

RESUMEN

Microglia-mediated neuroinflammation is involved in various neurological diseases, including ischemic stroke, but the endogenous mechanisms preventing unstrained inflammation is still unclear. The anti-inflammatory role of transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) in macrophages and microglia has previously been identified. However, the endogenous mechanisms that how NR4A1 restricts unstrained inflammation remain elusive. Here, we observed that NR4A1 is up-regulated in the cytoplasm of activated microglia and localizes to processing bodies (P-bodies). In addition, we found that cytoplasmic NR4A1 functions as an RNA-binding protein (RBP) that directly binds and destabilizes Tnf mRNA in an N6-methyladenosine (m6A)-dependent manner. Remarkably, conditional microglial deletion of Nr4a1 elevates Tnf expression and worsens outcomes in a mouse model of ischemic stroke, in which case NR4A1 expression is significantly induced in the cytoplasm of microglia. Thus, our study illustrates a novel mechanism that NR4A1 posttranscriptionally regulates Tnf expression in microglia and determines stroke outcomes.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Factores de Transcripción , Microglía , Inflamación , ARN Mensajero
2.
J Neuroinflammation ; 21(1): 35, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287411

RESUMEN

BACKGROUND: Microglia is the major contributor of post-stroke neuroinflammation cascade and the crucial cellular target for the treatment of ischemic stroke. Currently, the endogenous mechanism underlying microglial activation following ischemic stroke remains elusive. Serglycin (SRGN) is a proteoglycan expressed in immune cells. Up to now, the role of SRGN on microglial activation and ischemic stroke is largely unexplored. METHODS: Srgn knockout (KO), Cd44-KO and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO) to mimic ischemic stroke. Exogenous SRGN supplementation was achieved by stereotactic injection of recombinant mouse SRGN (rSRGN). Cerebral infarction was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Neurological functions were evaluated by the modified neurological severity score (mNSS) and grip strength. Microglial activation was detected by Iba1 immunostaining, morphological analysis and cytokines' production. Neuronal death was examined by MAP2 immunostaining and FJB staining. RESULTS: The expression of SRGN and its receptor CD44 was significantly elevated in the ischemic mouse brains, especially in microglia. In addition, lipopolysaccharide (LPS) induced SRGN upregulation in microglia in vitro. rSRGN worsened ischemic brain injury in mice and amplified post-stroke neuroinflammation, while gene knockout of Srgn exerted reverse impacts. rSRGN promoted microglial proinflammatory activation both in vivo and in vitro, whereas Srgn-deficiency alleviated microglia-mediated inflammatory response. Moreover, the genetic deletion of Cd44 partially rescued rSRGN-induced excessed neuroinflammation and ischemic brain injury in mice. Mechanistically, SRGN boosted the activation of NF-κB signal, and increased glycolysis in microglia. CONCLUSION: SRGN acts as a novel therapeutic target in microglia-boosted proinflammatory response following ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Proteínas de Transporte Vesicular , Animales , Ratones , Microglía/metabolismo , Isquemia Encefálica/metabolismo , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Proteoglicanos/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Lesiones Encefálicas/metabolismo
3.
Cell Commun Signal ; 22(1): 271, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750493

RESUMEN

BACKGROUND: Macrophages are key inflammatory immune cells that orchestrate the initiation and progression of autoimmune diseases. The characters of macrophage in diseases are determined by its phenotype in response to the local microenvironment. Ficolins have been confirmed as crucial contributors to autoimmune diseases, with Ficolin-2 being particularly elevated in patients with autoimmune diseases. However, whether Ficolin-A stimulates macrophage polarization is still poorly understood. METHODS: We investigated the transcriptomic expression profile of murine bone marrow-derived macrophages (BMDMs) stimulated with Ficolin-A using RNA-sequencing. To further confirm a distinct phenotype activated by Ficolin-A, quantitative RT-PCR and Luminex assay were performed in this study. Additionally, we assessed the activation of underlying cell signaling pathways triggered by Ficolin-A. Finally, the impact of Ficolin-A on macrophages were investigated in vivo through building Collagen-induced arthritis (CIA) and Dextran Sulfate Sodium Salt (DSS)-induced colitis mouse models with Fcna-/- mice. RESULTS: Ficolin-A activated macrophages into a pro-inflammatory phenotype distinct to LPS-, IFN-γ- and IFN-γ + LPS-induced phenotypes. The transcriptomic profile induced by Ficolin-A was primarily characterized by upregulation of interleukins, chemokines, iNOS, and Arginase 1, along with downregulation of CD86 and CD206, setting it apart from the M1 and M2 phenotypes. The activation effect of Ficolin-A on macrophages deteriorated the symptoms of CIA and DSS mouse models, and the deletion of Fcna significantly alleviated the severity of diseases in mice. CONCLUSION: Our work used transcriptomic analysis by RNA-Seq to investigate the impact of Ficolin-A on macrophage polarization. Our findings demonstrate that Ficolin-A induces a novel pro-inflammatory phenotype distinct to the phenotypes activated by LPS, IFN-γ and IFN-γ + LPS on macrophages.


Asunto(s)
Ficolinas , Inflamación , Lectinas , Macrófagos , Ratones Endogámicos C57BL , Fenotipo , Animales , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Lectinas/genética , Lectinas/metabolismo , Ratones , Inflamación/genética , Inflamación/patología , Activación de Macrófagos/efectos de los fármacos , Colitis/inducido químicamente , Colitis/patología , Colitis/genética , Polaridad Celular/efectos de los fármacos , Artritis Experimental/genética , Artritis Experimental/patología , Transducción de Señal/efectos de los fármacos
4.
J Neuroinflammation ; 20(1): 105, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138312

RESUMEN

BACKGROUND: Chronic cerebral ischemia induces white matter injury (WMI) contributing to cognitive decline. Both astrocytes and microglia play vital roles in the demyelination and remyelination processes, but the underlying mechanism remains unclear. This study aimed to explore the influence of the chemokine CXCL5 on WMI and cognitive decline in chronic cerebral ischemia and the underlying mechanism. METHODS: Bilateral carotid artery stenosis (BCAS) model was constructed to mimic chronic cerebral ischemia in 7-10 weeks old male mice. Astrocytic Cxcl5 conditional knockout (cKO) mice were constructed and mice with Cxcl5 overexpressing in astrocytes were generated by stereotactic injection of adeno-associated virus (AAV). WMI was evaluated by magnetic resonance imaging (MRI), electron microscopy, histological staining and western blotting. Cognitive function was examined by a series of neurobehavioral tests. The proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), phagocytosis of microglia were analyzed via immunofluorescence staining, western blotting or flow cytometry. RESULTS: CXCL5 was significantly elevated in the corpus callosum (CC) and serum in BCAS model, mainly expressed in astrocytes, and Cxcl5 cKO mice displayed improved WMI and cognitive performance. Recombinant CXCL5 (rCXCL5) had no direct effect on the proliferation and differentiation of OPCs in vitro. Astrocytic specific Cxcl5 overexpression aggravated WMI and cognitive decline induced by chronic cerebral ischemia, while microglia depletion counteracted this effect. Recombinant CXCL5 remarkably hindered microglial phagocytosis of myelin debris, which was rescued by inhibition of CXCL5 receptor C-X-C motif chemokine receptor 2 (CXCR2). CONCLUSION: Our study revealed that astrocyte-derived CXCL5 aggravated WMI and cognitive decline by inhibiting microglial phagocytosis of myelin debris, suggesting a novel astrocyte-microglia circuit mediated by CXCL5-CXCR2 signaling in chronic cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Estenosis Carotídea , Quimiocina CXCL5 , Sustancia Blanca , Animales , Masculino , Ratones , Astrocitos/patología , Isquemia Encefálica/patología , Estenosis Carotídea/patología , Quimiocina CXCL5/genética , Microglía , Vaina de Mielina/patología , Fagocitosis , Sustancia Blanca/patología
5.
J Neuroinflammation ; 20(1): 260, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951917

RESUMEN

BACKGROUND: Emerging evidence has shown that myeloid cells that infiltrate into the peri-infarct region may influence the progression of ischemic stroke by interacting with microglia. Properdin, which is typically secreted by immune cells such as neutrophils, monocytes, and T cells, has been found to possess damage-associated molecular patterns (DAMPs) properties and can perform functions unrelated to the complement pathway. However, the role of properdin in modulating microglia-mediated post-stroke neuroinflammation remains unclear. METHODS: Global and conditional (myeloid-specific) properdin-knockout mice were subjected to transient middle cerebral artery occlusion (tMCAO). Histopathological and behavioral tests were performed to assess ischemic brain injury in mice. Single-cell RNA sequencing and immunofluorescence staining were applied to explore the source and the expression level of properdin. The transcriptomic profile of properdin-activated primary microglia was depicted by transcriptome sequencing. Lentivirus was used for macrophage-inducible C-type lectin (Mincle) silencing in microglia. Conditioned medium from primary microglia was administered to primary cortex neurons to determine the neurotoxicity of microglia. A series of cellular and molecular biological techniques were used to evaluate the proinflammatory response, neuronal death, protein-protein interactions, and related signaling pathways, etc. RESULTS: The level of properdin was significantly increased, and brain-infiltrating neutrophils and macrophages were the main sources of properdin in the ischemic brain. Global and conditional myeloid knockout of properdin attenuated microglial overactivation and inflammatory responses at the acute stage of tMCAO in mice. Accordingly, treatment with recombinant properdin enhanced the production of proinflammatory cytokines and augmented microglia-potentiated neuronal death in primary culture. Mechanistically, recombinant properdin served as a novel ligand that activated Mincle receptors on microglia and downstream pathways to drive primary microglia-induced inflammatory responses. Intriguingly, properdin can directly bind to the microglial Mincle receptor to exert the above effects, while Mincle knockdown limits properdin-mediated microglial inflammation. CONCLUSION: Properdin is a new medium by which infiltrating peripheral myeloid cells communicate with microglia, further activate microglia, and exacerbate brain injury in the ischemic brain, suggesting that targeted disruption of the interaction between properdin and Mincle on microglia or inhibition of their downstream signaling may improve the prognosis of ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Ratones , Animales , Microglía/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Properdina/metabolismo , Properdina/farmacología , Enfermedades Neuroinflamatorias , Macrófagos/metabolismo , Infarto de la Arteria Cerebral Media/patología , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Ratones Endogámicos C57BL
6.
Mol Ther ; 29(9): 2873-2885, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33895326

RESUMEN

Dysregulated long non-coding RNAs (lncRNAs) have been shown to contribute to the pathogenesis of ischemic stroke. However, the potential role of lncRNAs in post-stroke microglial activation remains largely unknown. Here, we uncovered that lncRNA-U90926 was significantly increased in microglia exposed to ischemia/reperfusion both in vivo and in vitro. In addition, adenovirus-associated virus (AAV)-mediated microglial U90926 silencing alleviated neurological deficits and reduced infarct volume in experimental stroke mice. Microglial U90926 knockdown could reduce the infiltration of neutrophils into ischemic lesion site, which might be attributed to the downregulation of C-X-C motif ligand 2 (CXCL2). Mechanistically, U90926 directly bound to malate dehydrogenase 2 (MDH2) and competitively inhibited the binding of MDH2 to the CXCL2 3' untranslated region (UTR), thus protecting against MDH2-mediated decay of CXCL2 mRNA. Taken together, our study demonstrated that microglial U90926 aggravated ischemic brain injury via facilitating neutrophil infiltration, suggesting that U90926 might be a potential biomarker and therapeutic target for ischemic stroke.


Asunto(s)
Quimiocina CXCL2/genética , Accidente Cerebrovascular Isquémico/inmunología , Malato Deshidrogenasa/genética , Microglía/química , ARN Largo no Codificante/genética , Regulación hacia Arriba , Regiones no Traducidas 5' , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Accidente Cerebrovascular Isquémico/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila , Cultivo Primario de Células
7.
Cell Commun Signal ; 18(1): 57, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252776

RESUMEN

BACKGROUND: Chronic brain hypoperfusion (CBH) is closely related to Alzheimer's disease (AD) and vascular dementia (VaD). Meanwhile, synaptic pathology plays a prominent role in the initial stage of AD and VaD. However, whether and how CBH impairs presynaptic plasticity is currently unclear. METHODS: In the present study, we performed a battery of techniques, including primary neuronal culture, patch clamp, stereotaxic injection of the lentiviral vectors, morris water maze (MWM), dual luciferase reporter assay, FM1-43 fluorescence dye evaluation, qRT-PCR and western blot, to investigate the regulatory effect of miR-153 on hippocampal synaptic vesicle release both in vivo and in vitro. The CBH rat model was generated by bilateral common carotid artery ligation (2VO). RESULTS: Compared to sham rats, 2VO rats presented decreased field excitatory postsynaptic potential (fEPSP) amplitude and increased paired-pulse ratios (PPRs) in the CA3-CA1 pathway, as well as significantly decreased expression of multiple vesicle fusion-related proteins, including SNAP-25, VAMP-2, syntaxin-1A and synaptotagmin-1, in the hippocampi. The levels of microRNA-153 (miR-153) were upregulated in the hippocampi of rats following 2VO surgery, and in the plasma of dementia patients. The expression of the vesicle fusion-related proteins affected by 2VO was inhibited by miR-153, elevated by miR-153 inhibition, and unchanged by binding-site mutation or miR masks. FM1-43 fluorescence images showed that miR-153 blunted vesicle exocytosis, but this effect was prevented by either 2'-O-methyl antisense oligoribonucleotides to miR-153 (AMO-153) and miR-masking of the miR-153 binding site in the 3' untranslated region (3'UTR) of the Snap25, Vamp2, Stx1a and Syt1 genes. Overexpression of miR-153 by lentiviral vector-mediated miR-153 mimics (lenti-pre-miR-153) decreased the fEPSP amplitude and elevated the PPR in the rat hippocampus, whereas overexpression of the antisense molecule (lenti-AMO-153) reversed these changes triggered by 2VO. Furthermore, lenti-AMO-153 attenuated the cognitive decline of 2VO rats. CONCLUSIONS: Overexpression of miR-153 controls CBH-induced presynaptic vesicle release impairment by posttranscriptionally regulating the expression of four vesicle release-related proteins by targeting the 3'UTRs of the Stx1a, Snap25, Vamp2 and Syt1 genes. These findings identify a novel mechanism of presynaptic plasticity impairment during CBH, which may be a new drug target for prevention or treatment of AD and VaD. Video Abstract.


Asunto(s)
Demencia Vascular/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , MicroARNs/fisiología , Vesículas Sinápticas/metabolismo , Anciano , Animales , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptotagmina I/metabolismo , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
8.
J Mol Cell Cardiol ; 120: 12-27, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29775643

RESUMEN

Cardiovascular diseases are risk factors for dementia, but the mechanisms remain elusive. Here, we report that myocardial infarction (MI) generated by the ligation of the left coronary artery (LCA) could lead to increased miR-1 levels in the hippocampus and blood with neuronal microtubule damage and decreased TPPP/p25 protein expression in the hippocampus. These changes could be prevented by a knockdown of miR-1 using hippocampal stereotaxic injections of anti-miR-1 oligonucleotide fragments carried by a lentivirus vector (lenti-pre-AMO-miR-1). TPPP/p25 protein was downregulated by miR-1 overexpression, upregulated by miR-1 inhibition, and unchanged by binding-site mutations or miR-masks, indicating that the TPPP/p25 gene was a potential target for miR-1. Additionally, the pharmacological inhibition of sphingomyelinase by GW4869 to inhibit exosome generation in the heart significantly attenuated the increased miR-1 levels in the hippocampi of transgenic (Tg) and MI mice. Collectively, the present study demonstrates that MI could directly lead to neuronal microtubule damage independent of MI-induced chronic brain hypoperfusion but involving the overexpression of miR-1 in the hippocampus that was transported by exosomes from infarcted hearts. This study reveals a novel insight into the molecular mechanisms of heart-to-brain communication at the miRNA level.


Asunto(s)
Hipocampo/patología , MicroARNs/metabolismo , Microtúbulos/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Análisis de Varianza , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Exosomas/metabolismo , Vectores Genéticos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosfotransferasas/metabolismo , Ratas , Ratas Sprague-Dawley , Transfección
9.
Brain Res Bull ; 207: 110868, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181967

RESUMEN

Due to various factors, there is still a lack of effective neuroprotective agents for ischemic stroke in clinical practice. Neuroinflammation and neuronal apoptosis mediated by endoplasmic reticulum stress are some of the important pathological mechanisms in ischemic stroke. Linarin has been reported to have anti-inflammation, antioxidant, and anti-apoptotic effects in myocardial ischemia, osteoarthritis, and kidney disease. Whether it exerts neuroprotective functions in ischemic stroke has not been investigated. The results showed that linarin could reduce the infarct volume in cerebral ischemia animal models, improve the neurological function scores and suppress the expression of inflammatory factors mediating the NF-κB. Meanwhile, it could protect the neurons from OGD/R-induced-apoptosis, which was related to the PERK-eIF2α pathway. Our results suggested linarin could inhibit neuronal inflammation and apoptosis induced by endoplasmic reticulum stress. Furthermore, the neuroprotective effect of linarin may be related to the inhibition of AKR1B1. Our study offers new insight into protecting against ischemia-reperfusion injury by linarin treatment in stroke.


Asunto(s)
Isquemia Encefálica , Glicósidos , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Transducción de Señal , Daño por Reperfusión/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Apoptosis , Infarto de la Arteria Cerebral Media/metabolismo
10.
Eur J Pharmacol ; 969: 176409, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365105

RESUMEN

During the inflammatory response after stroke, the blood-brain barrier (BBB) is significantly disrupted, compromising its integrity. This disruption allows many peripheral neutrophils to infiltrate the injury site in the brain and release neutrophil extracellular traps (NETs), which further increase BBB permeability. In this study, we aimed to investigate the protective effects of γ-Glutamylcysteine (γ-GC), an immediate precursor of GSH, against BBB breakdown and NET formation after ischemic stroke. Our data indicated that γ-GC treatment effectively attenuated BBB damage, decreased neutrophil infiltration, and suppressed the release of NETs, ultimately leading to the amelioration of ischemic injury. Transcriptomic data and subsequent validation studies revealed that mechanistically, γ-GC exerts its effect by activating the Wnt/ß-catenin pathway after ischemic stroke. This research suggests that γ-GC may hold promise as a therapeutic agent for alleviating brain injury following an ischemic stroke.


Asunto(s)
Dipéptidos , Trampas Extracelulares , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Trampas Extracelulares/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , beta Catenina/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Permeabilidad
11.
Neurosci Bull ; 40(4): 483-499, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37979054

RESUMEN

Chronic cerebral hypoperfusion is one of the pathophysiological mechanisms contributing to cognitive decline by causing white matter injury. Microglia phagocytosing myelin debris in a timely manner can promote remyelination and contribute to the repair of white matter. However, milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a microglial phagocytosis-related protein, has not been well studied in hypoperfusion-related cognitive dysfunction. We found that the expression of MFG-E8 was significantly decreased in the brain of mice after bilateral carotid artery stenosis (BCAS). MFG-E8 knockout mice demonstrated more severe BCAS-induced cognitive impairments in the behavioral tests. In addition, we discovered that the deletion of MFG-E8 aggravated white matter damage and the destruction of myelin microstructure through fluorescent staining and electron microscopy. Meanwhile, MFG-E8 overexpression by AAV improved white matter injury and increased the number of mature oligodendrocytes after BCAS. Moreover, in vitro and in vivo experiments showed that MFG-E8 could enhance the phagocytic function of microglia via the αVß3/αVß5/Rac1 pathway and IGF-1 production to promote the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes. Interestingly, we found that MFG-E8 was mainly derived from astrocytes, not microglia. Our findings suggest that MFG-E8 is a potential therapeutic target for cognitive impairments following cerebral hypoperfusion.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Remielinización , Ratones , Animales , Vaina de Mielina , Fagocitosis/fisiología , Microglía/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Isquemia Encefálica/complicaciones , Isquemia Encefálica/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
12.
J Biophotonics ; 17(4): e202300497, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282467

RESUMEN

The influence of femtosecond laser parameters on the degree of thermal denaturation was studied experimentally. The relationship between the degree of thermal denaturation and the characteristic parameters of skin microstructure and the secondary structure of skin tissue proteins in characterizing the degree of thermal damage was analyzed. The results showed the interaction of laser power, laser power, and scanning speed had a significant effect on the degree of thermal denaturation; greater degrees of thermal denaturation were associated with larger second-order moments of the texture angle of the skin microtissue and smaller entropy values and contrast, indicating a greater degree of thermal damage; and higher peak temperature, the lower peak intensity of Raman spectra, decrease in the percentage area of α-helix fitted curves and increase in the percentage area of ß-sheet and ß-turn fitted curves indicate that the protein is denatured to a large extent that means thermal damage is large.


Asunto(s)
Calor , Estructura Secundaria de Proteína , Desnaturalización Proteica
13.
Int Immunopharmacol ; 129: 111648, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38335656

RESUMEN

AIMS: To study the role of Aucubin (AU) in cerebral ischemia-reperfusion injury and investigate the potential mechanisms. METHODS: For the in vitro experiment, primary microglia were cultured and stimulated by Lipopolysaccharides (LPS) and treated with AU. Male C57/BL6J mice were used and middle cerebral artery occlusion (MCAO) model was performed to induce cerebral ischemia-reperfusion injury. For the short-term effects, mice administrated with AU (40 mg/kg) for 3 days after MCAO were evaluated for the infarct volume and neurological deficits. The neuroinflammatory factors and microglia activation were determined by Real-time PCR, western blot and immunofluorescence staining. For the long-term effects, MCAO mice were injected daily with AU (5 mg/kg or 10 mg/kg) for 28 days. Behavior tests were used to assess the neurological deficits of MCAO mice, and white matter integrity was determined by myelin basic protein (MBP) staining and black-gold staining. RESULTS: AU suppressed LPS-induced activation of microglia and pro-inflammatory cytokines release, and downregulated the NF-κB and MAPK pathways in primary microglia. In addition, AU attenuated ischemic injury and inhibited the neuro-inflammatory response in MCAO mice. Moreover, AU induced prolonged improvements in sensorimotor function and memory function following MCAO, and preserved white matter integrity in the long-term experiments. CONCLUSIONS: AU protected against ischemic injury, which might be correlated with the downregulation of NF-κB and MAPK signaling pathways. Furthermore, AU alleviated cognitive impairment after stroke and restored white matter integrity. Our data indicated that AU might be a potential compound for the treatment of stroke and post-stroke cognitive impairment.


Asunto(s)
Isquemia Encefálica , Glucósidos Iridoides , Fármacos Neuroprotectores , Daño por Reperfusión , Accidente Cerebrovascular , Ratones , Masculino , Animales , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Lipopolisacáridos/farmacología , Accidente Cerebrovascular/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Microglía , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
14.
Neurosci Bull ; 40(4): 451-465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38113014

RESUMEN

Moyamoya disease (MMD) is a chronic occlusive cerebrovascular disease with the development of a network of abnormal vessels. Immune inflammation is associated with the occurrence and development of MMD. However, the mechanisms underlying the formation of the abnormal vascular network remain unclear. Twenty-eight patients with MMD, 26 ischemic stroke patients, and 26 unrelated healthy volunteers were enrolled in this study The data showed that the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) were higher in MMD patients than in healthy controls (P <0.01), and GM-CSF was mainly from Th1 and Th17 cells in MMD. We found that increased GM-CSF drove monocytes to secrete a series of cytokines associated with angiogenesis, inflammation, and chemotaxis. In summary, our findings demonstrate for the first time the important involvement of GM-CSF in MMD and that GM-CSF is an important factor in the formation of abnormal vascular networks in MMD.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Enfermedad de Moyamoya , Humanos , Inflamación
15.
J Cereb Blood Flow Metab ; 44(1): 77-93, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37794790

RESUMEN

Ischemic white matter injury leads to long-term neurological deficits and lacks effective medication. Growth arrest specific protein 6 (Gas6) clears myelin debris, which is hypothesized to promote white matter integrity in experimental stroke models. By the middle cerebral artery occlusion (MCAO) stroke model, we observed that Gas6 reduced infarcted volume and behavior deficits 4 weeks after MCAO. Compared with control mice, Gas6-treatment mice represented higher FA values in the ipsilateral external capsules by MRI DTI scan. The SMI32/MBP ratio of the ipsilateral cortex and striatum was profoundly alleviated by Gas6 administration. Gas6-treatment group manifested thicker myelin sheaths than the control group by electron microscopy. We observed that Gas6 mainly promoted OPC maturation, which was closely related to microglia. Mechanically, Gas6 accelerated microglia-mediated myelin debris clearance and cholesterol transport protein expression (abca1, abcg1, apoc1, apoe) in vivo and in vitro, accordingly less myelin debris and lipid deposited in Gas6 treated stroke mice. HX531 (RXR inhibitor) administration mitigated the functions of Gas6 in speeding up debris clearance and cholesterol transport protein expression. Generally, we concluded that Gas6 cleared myelin debris and promoted cholesterol transportation protein expression through activating RXR, which could be one critical mechanism contributing to white matter repair after stroke.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Sustancia Blanca , Ratones , Animales , Accidente Cerebrovascular/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Microglía , Colesterol/farmacología , Colesterol/uso terapéutico , Proteínas Portadoras
16.
Neurochem Int ; 175: 105676, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38336256

RESUMEN

BACKGROUND: Microglia-mediated neuroinflammation is the major contributor to the secondary brain injury of ischemic stroke. NLRP3 is one of the major components of ischemia-induced microglial activation. Echinatin, a chalcone found in licorice, was reported to have the activity of anti-inflammation and antioxidant. However, the relative study of echinatin in microglia or ischemic stroke is still unclear. METHODS: We intravenously injected echinatin or vehicle into adult ischemic male C57/BL6J mice induced by 60-min transient middle cerebral artery occlusion (tMCAO). The intraperitoneal injection was performed 4.5 h after reperfusion and then daily for 2 more days. Infarct size, blood brain barrier (BBB) leakage, neurobehavioral tests, and microglial-mediated inflammatory reaction were examined to assess the outcomes of echinatin treatment. LPS and LPS/ATP stimulation on primary microglia were used to explore the underlying anti-inflammatory mechanism of echinatin. RESULTS: Echinatin treatment efficiently decreased the infarct size, alleviated blood brain barrier (BBB) damage, suppressed microglial activation, reduced the production of inflammatory factors (e.g., IL-1ß, IL-6, IL-18, TNF-α, iNOS, COX2), and relieved post-stroke neurological defects in tMCAO mice. Mechanistically, we found that echinatin could suppress the NLRP3 assembly and reduce the production of inflammatory mediators independently of NF-κB and monoamine oxidase (MAO). CONCLUSION: Based on our study, we have identified echinatin as a promising therapeutic strategy for the treatment of ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Chalconas , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Ratones , Masculino , Animales , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Lipopolisacáridos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Infarto/complicaciones , Infarto/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Isquemia Encefálica/complicaciones , Microglía , Daño por Reperfusión/tratamiento farmacológico
17.
CNS Neurosci Ther ; 30(5): e14742, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38715283

RESUMEN

BACKGROUND: Adenosine A3 receptor (ADORA3) belongs to the adenosine receptor families and the role of ADORA3 in vascular dementia (VaD) is largely unexplored. The present study sought to determine the therapeutic role of ADORA3 antagonist in a mouse model of VaD. METHODS: The GSE122063 dataset was selected to screen the differential expression genes and pathways between VaD patients and controls. A mouse model of bilateral carotid artery stenosis (BCAS) was established. The cognitive functions were examined by the novel object recognition test, Y maze test, and fear of conditioning test. The white matter injury (WMI) was examined by 9.4 T MRI, western blot, and immunofluorescence staining. The mechanisms of ADORA3-regulated phagocytosis by microglia were examined using qPCR, western blot, dual immunofluorescence staining, and flow cytometry. RESULTS: The expression of ADORA3 was elevated in brain tissues of VaD patients and ADORA3 was indicated as a key gene for VaD in the GSE122063. In BCAS mice, the expression of ADORA3 was predominantly elevated in microglia in the corpus callosum. ADORA3 antagonist promotes microglial phagocytosis to myelin debris by facilitating cAMP/PKA/p-CREB pathway and thereby ameliorates WMI and cognitive impairment in BCAS mice. The therapeutic effect of ADORA3 antagonist was partially reversed by the inhibition of the cAMP/PKA pathway. CONCLUSIONS: ADORA3 antagonist alleviates chronic ischemic WMI by modulating myelin clearance of microglia, which may be a potential therapeutic target for the treatment of VaD.


Asunto(s)
Demencia Vascular , Ratones Endogámicos C57BL , Microglía , Fagocitosis , Receptor de Adenosina A3 , Animales , Humanos , Masculino , Ratones , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Estenosis Carotídea , Demencia Vascular/patología , Demencia Vascular/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Compuestos Orgánicos , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Receptor de Adenosina A3/metabolismo , Receptor de Adenosina A3/genética , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/efectos de los fármacos
18.
CNS Neurosci Ther ; 30(4): e14696, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38668740

RESUMEN

AIMS: Excessive neuroinflammation mediated mainly by microglia plays a crucial role in ischemic stroke. AZD1390, an ataxia telangiectasia mutated (ATM) specific inhibitor, has been shown to promote radio-sensitization and survival in central nervous system malignancies, while the role of AZD1390 in ischemic stroke remains unknown. METHODS: Real-time PCR, western blot, immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assays were used to assess the activation of microglia and the release of inflammatory cytokines. Behavioral tests were performed to measure neurological deficits. 2,3,5-Triphenyltetrazolium chloride staining was conducted to assess the infarct volume. The activation of NF-κB signaling pathway was explored through immunofluorescence staining, western blot, co-immunoprecipitation and proximity ligation assay. RESULTS: The level of pro-inflammation cytokines and activation of NF-κB signaling pathway was suppressed by AZD1390 in vitro and in vivo. The behavior deficits and infarct size were partially restored with AZD1390 treatment in experimental stroke. AZD1390 restrict ubiquitylation and sumoylation of the essential regulatory subunit of NF-κB (NEMO) in an ATM-dependent and ATM-independent way respectively, which reduced the activation of the NF-κB pathway. CONCLUSION: AZD1390 suppressed NF-κB signaling pathway to alleviate ischemic brain injury in experimental stroke, and attenuated microglia activation and neuroinflammation, which indicated that AZD1390 might be an attractive agent for the treatment of ischemic stroke.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Piridinas , Quinolonas , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos
19.
J Biophotonics ; 16(11): e202300157, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37483010

RESUMEN

In this paper, the effect of the femtosecond laser process parameters on the texture characteristics of the microstructure was analyzed with the response surface method. The correspondence between the temperature of skin during laser bonding and microscopic tissue texture characteristics parameters was explored. The results show that the three process parameters of laser power, scanning speed, and scanning times and the interaction between the parameters have different patterns of influence on the four texture characteristics parameters of skin microstructure angular second-order moments, entropy, contrast, and relevance. Angular second-order moments and relevance of skin microstructure textures increase with increasing temperature, while entropy values and contrast decrease. It provides another way to evaluate the performance of femtosecond laser-bonded skin with microstructure.


Asunto(s)
Rayos Láser , Piel , Temperatura
20.
Neurosci Lett ; 805: 137213, 2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-36966961

RESUMEN

INTRODUCTION: Bilateral common carotid artery stenosis (BCAS) is used experimentally to model vascular dementia (VaD). Previous studies have primarily focused on the degradation of brain white matter after BCAS. However, hippocampal abnormalities are equally important, and hippocampal astrocytes are specifically involved in neural circuits that regulate learning and memory. Whether hippocampal astrocytes participate in the pathogenesis of BCAS-induced VaD has not been well studied. Therefore, in the present study, we attempted to explore the role of hippocampal astrocytes in BCAS. METHODS: Two months after BCAS, behavioral experiments were conducted to investigate changes in neurological function in sham and BCAS mice. A ribosome-tagging approach (RiboTag) profiling strategy was used to isolate mRNAs enriched in hippocampal astrocytes, and the RNA was sequenced and analyzed using transcriptomic methods. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was utilized to validate the results of RNA sequencing. Immunofluorescence analyses were conducted to evaluate the number and morphology of hippocampal astrocytes. RESULTS: We observed significant short-term working memory impairment in BCAS mice. Moreover, the RNA obtained through RiboTag technology was specific to astrocytes. Transcriptomics approaches and subsequent validation studies revealed that the genes that showed expression changes in hippocampal astrocytes after BCAS were mainly involved in immune system processes, glial cell proliferation, substance transport and metabolism. Furthermore, the number and distribution of astrocytes in the CA1 region of the hippocampus tended to decrease after modeling. CONCLUSION: In this study, comparisons between sham and BCAS mice showed that the functions of hippocampal astrocytes were impaired in BCAS-induced chronic cerebral hypoperfusion-related VaD.


Asunto(s)
Estenosis Carotídea , Demencia Vascular , Animales , Ratones , Astrocitos/patología , Estenosis Carotídea/complicaciones , Demencia Vascular/patología , Hipocampo/patología , Análisis de Secuencia de ARN , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA