RESUMEN
In vivo pharmacology and optogenetics hold tremendous promise for dissection of neural circuits, cellular signaling, and manipulating neurophysiological systems in awake, behaving animals. Existing neural interface technologies, such as metal cannulas connected to external drug supplies for pharmacological infusions and tethered fiber optics for optogenetics, are not ideal for minimally invasive, untethered studies on freely behaving animals. Here, we introduce wireless optofluidic neural probes that combine ultrathin, soft microfluidic drug delivery with cellular-scale inorganic light-emitting diode (µ-ILED) arrays. These probes are orders of magnitude smaller than cannulas and allow wireless, programmed spatiotemporal control of fluid delivery and photostimulation. We demonstrate these devices in freely moving animals to modify gene expression, deliver peptide ligands, and provide concurrent photostimulation with antagonist drug delivery to manipulate mesoaccumbens reward-related behavior. The minimally invasive operation of these probes forecasts utility in other organ systems and species, with potential for broad application in biomedical science, engineering, and medicine.
Asunto(s)
Estimulación Encefálica Profunda/métodos , Optogenética/métodos , Animales , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ratones , Sondas Moleculares , Tecnología InalámbricaRESUMEN
Activation of the T-cell antigen receptor (TCR)-CD3 complex is critical to induce the anti-tumor response of CD8+ T cells. Here, we found that disulfiram (DSF), an FDA-approved drug previously used to treat alcohol dependency, directly activates TCR signaling. Mechanistically, DSF covalently binds to Cys20/Cys23 residues of lymphocyte-specific protein tyrosine kinase (LCK) and enhances its tyrosine 394 phosphorylation, thereby promoting LCK kinase activity and boosting effector T cell function, interleukin-2 production, metabolic reprogramming, and proliferation. Furthermore, our in vivo data revealed that DSF promotes anti-tumor immunity against both melanoma and colon cancer in mice by activating CD8+ T cells, and this effect was enhanced by anti-PD-1 co-treatment. We conclude that DSF directly activates LCK-mediated TCR signaling to induce strong anti-tumor immunity, providing novel molecular insights into the therapeutic effect of DSF on cancer.
Asunto(s)
Disulfiram , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Animales , Linfocitos T CD8-positivos , Disulfiram/farmacología , Activación de Linfocitos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Ratones , Fosforilación , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de SeñalRESUMEN
Local associations refer to spatial-temporal correlations that emerge from the biological realm, such as time-dependent gene co-expression or seasonal interactions between microbes. One can reveal the intricate dynamics and inherent interactions of biological systems by examining the biological time series data for these associations. To accomplish this goal, local similarity analysis algorithms and statistical methods that facilitate the local alignment of time series and assess the significance of the resulting alignments have been developed. Although these algorithms were initially devised for gene expression analysis from microarrays, they have been adapted and accelerated for multi-omics next generation sequencing datasets, achieving high scientific impact. In this review, we present an overview of the historical developments and recent advances for local similarity analysis algorithms, their statistical properties, and real applications in analyzing biological time series data. The benchmark data and analysis scripts used in this review are freely available at http://github.com/labxscut/lsareview.
Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Factores de Tiempo , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , BenchmarkingRESUMEN
Extramedullary infiltration (EMI) is a concomitant manifestation that may indicate poor outcome of acute myeloid leukemia (AML). The underlying mechanism remains poorly understood and therapeutic options are limited. Here, we employed single-cell RNA sequencing on bone marrow (BM) and EMI samples from a patient with AML presenting pervasive leukemia cutis. A complement C1Q+ macrophage-like leukemia subset, which was enriched within cutis and existed in BM before EMI manifestations, was identified and further verified in multiple patients with AML. Genomic and transcriptional profiling disclosed mutation and gene expression signatures of patients with EMI that expressed high levels of C1Q. RNA sequencing and quantitative proteomic analysis revealed expression dynamics of C1Q from primary to relapse. Univariate and multivariate analysis demonstrated adverse prognosis significance of C1Q expression. Mechanistically, C1Q expression, which was modulated by transcription factor MAF BZIP transcription factor B, endowed leukemia cells with tissue infiltration ability, which could establish prominent cutaneous or gastrointestinal EMI nodules in patient-derived xenograft and cell line-derived xenograft models. Fibroblasts attracted migration of the C1Q+ leukemia cells through C1Q-globular C1Q receptor recognition and subsequent stimulation of transforming growth factor ß1. This cell-to-cell communication also contributed to survival of C1Q+ leukemia cells under chemotherapy stress. Thus, C1Q served as a marker for AML with adverse prognosis, orchestrating cancer infiltration pathways through communicating with fibroblasts and represents a compelling therapeutic target for EMI.
Asunto(s)
Complemento C1q , Leucemia Mieloide Aguda , Humanos , Proteómica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea/metabolismo , Pronóstico , Enfermedad Crónica , RecurrenciaRESUMEN
The spread of antibiotic resistance genes (ARGs), particularly those carried on plasmids, poses a major risk to global health. However, the extent and frequency of ARGs transfer in microbial communities among human, animal, and environmental sectors is not well understood due to a lack of effective tracking tools. We have developed a novel fluorescent tracing tool, CRISPR-AMRtracker, to study ARG transfer. It combines CRISPR/Cas9 fluorescence tagging, fluorescence-activated cell sorting, 16S rRNA gene sequencing, and microbial community analysis. CRISPR-AMRtracker integrates a fluorescent tag immediately downstream of ARGs, enabling the tracking of ARG transfer without compromising the host cell's antibiotic susceptibility, fitness, conjugation, and transposition. Notably, our experiments demonstrate that sfGFP-tagged plasmid-borne mcr-1 can transfer across diverse bacterial species within fecal samples. This innovative approach holds the potential to illuminate the dynamics of ARG dissemination and provide valuable insights to shape effective strategies in mitigating the escalating threat of antibiotic resistance.
RESUMEN
S-adenosylmethionine (SAM) as a major methyl donor plays a key role in methylation modification in vivo, and its disorder was closely related to neural tube defects (NTDs). However, the exact mechanism between SAM deficiency and NTDs remained unclearly. Hence, we investigated the association between histone methylation modification and cell differentiation in NTDs mice induced by SAM deficiency. The levels of SAM and SAH (S-adenosylhomocysteine) were determined by enzyme linked immunosorbent assay (ELISA). The level of histone methylation, ß-catenin were analyzed by Western blot, reversing transcription and quantitative PCR (RT-qPCR) and immunofluorescence. The results showed that the incidence rate of NTDs induced by ethionine were 46.2%. Post treatment of ethionine combined with SAM, the incidence rate of NTDs was reduced to 26.2%. The level of SAM was significantly decreased (p < 0.05) and a reduction in the SAM/SAH ratio was observed after entionine treatment. The SAM deficiency caused the reduction of H3K27me3 modifications and the elevated UTX activity (p < 0.05), and inhibited the expressions of ß-catenin. The differentiations of NSCs into neurons and oligodendrocytes were inhibited under SAM deficiency (p < 0.05). These results indicated that the SAM deficiency led to reduce H3K27me3 modifications, prevented the ß-catenin signaling pathway and NSCs differentiation, which provided an understanding of the novel function of epigenetic regulation in NTDs.
RESUMEN
BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.
Asunto(s)
Disección Aórtica , Músculo Liso Vascular , Animales , Humanos , Ratones , Disección Aórtica/genética , Sistema de Señalización de MAP Quinasas , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , FosforilaciónRESUMEN
BACKGROUND: Metabolic reprogramming and epigenetic alterations contribute to the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). Lactate-dependent histone modification is a new type of histone mark, which links glycolysis metabolite to the epigenetic process of lactylation. However, the role of histone lactylation in PDAC remains unclear. METHODS: The level of histone lactylation in PDAC was identified by western blot and immunohistochemistry, and its relationship with the overall survival was evaluated using a Kaplan-Meier survival plot. The participation of histone lactylation in the growth and progression of PDAC was confirmed through inhibition of histone lactylation by glycolysis inhibitors or lactate dehydrogenase A (LDHA) knockdown both in vitro and in vivo. The potential writers and erasers of histone lactylation in PDAC were identified by western blot and functional experiments. The potential target genes of H3K18 lactylation (H3K18la) were screened by CUT&Tag and RNA-seq analyses. The candidate target genes TTK protein kinase (TTK) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) were validated through ChIP-qPCR, RT-qPCR and western blot analyses. Next, the effects of these two genes in PDAC were confirmed by knockdown or overexpression. The interaction between TTK and LDHA was identified by Co-IP assay. RESULTS: Histone lactylation, especially H3K18la level was elevated in PDAC, and the high level of H3K18la was associated with poor prognosis. The suppression of glycolytic activity by different kinds of inhibitors or LDHA knockdown contributed to the anti-tumor effects of PDAC in vitro and in vivo. E1A binding protein p300 (P300) and histone deacetylase 2 were the potential writer and eraser of histone lactylation in PDAC cells, respectively. H3K18la was enriched at the promoters and activated the transcription of mitotic checkpoint regulators TTK and BUB1B. Interestingly, TTK and BUB1B could elevate the expression of P300 which in turn increased glycolysis. Moreover, TTK phosphorylated LDHA at tyrosine 239 (Y239) and activated LDHA, and subsequently upregulated lactate and H3K18la levels. CONCLUSIONS: The glycolysis-H3K18la-TTK/BUB1B positive feedback loop exacerbates dysfunction in PDAC. These findings delivered a new exploration and significant inter-relationship between lactate metabolic reprogramming and epigenetic regulation, which might pave the way toward novel lactylation treatment strategies in PDAC therapy.
Asunto(s)
Carcinoma Ductal Pancreático , Regulación Neoplásica de la Expresión Génica , Glucólisis , Histonas , L-Lactato Deshidrogenasa , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Humanos , Histonas/metabolismo , Animales , Línea Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Ratones , Retroalimentación Fisiológica , Epigénesis Genética , Carcinogénesis/metabolismo , Carcinogénesis/genética , Pronóstico , Proliferación Celular , FemeninoRESUMEN
Tailoring the optoelectronic characteristics of colloidal quantum dots (QDs) by constructing a core/shell structure offers the potential to achieve high-performing solution-processed photoelectric conversion and information processing applications. In this work, the direct growth of wurtzite ternary AgInS2 (AIS) shell on eco-friendly AgGaS2 (AGS) core QDs is realized, giving rise to broadened visible light absorption, prolonged exciton lifetime and enhanced photoluminescence quantum yield (PLQY). Ultrafast transient absorption spectroscopy demonstrats that the photoinduced carrier separation and transfer kinetics of AGS QDs are significantly optimized following the AIS shell coating. As-synthesized environmentally benign AGS/AIS core/shell QDs are employed to fabricate photodetectors (PDs), showing a remarkable responsivity of 38.4 A W-1 and a detectivity of 2.4 × 1012 Jones under visible light illumination (405 nm). Moreover, the fabricated QDs-PDs exhibit superior image-sensing capability to record complex patterns with high resolution (160 × 160 pixels) under visible light illumination at 405 and 532 nm. The findings indicate that the direct growth of multinary narrow-band shell materials on eco-friendly QDs holds great promise to implement future "green", cost-effective and high-performance optoelectronic sensing/imaging systems.
RESUMEN
The development of wideband guided hollow-core anti-resonant fiber (HC-ARF) that covers the sensitive range of the human eye's visible spectrum is progressing rapidly. However, achieving low-loss wideband transmission with a small bending radius remains a challenging issue to be addressed. In light of this, we propose a novel, to our knowledge, HC-ARF with a nested double-semi-elliptical cladding structure in the visible spectral region. By employing finite element method simulations, we investigate the confinement loss, bending loss, and single-mode performance of this fiber design. The result shows that the confinement loss of this new fiber exhibits below 10-5â dB·m-1 across almost the entire visible band range, with a minimum loss of 1.55 × 10-7â dB·m-1 achieved for λ = 650 nm. Furthermore, this fiber demonstrates excellent resistance to bending and can maintain an ultra-low bending loss as low as 3 × 10-7â dB·m-1 even under extreme bending conditions with a radius of only 3â cm. Notably, its 3-dB bending radius reaches just 3.5â cm for λ = 532 nm. Additionally, it exhibits outstanding single-mode conductivity under various bending scenarios and achieves a high extinction ratio of up to 104 for higher-order modes after parameter optimization for specific wavelengths.
RESUMEN
Mycobacterium tuberculosis (MTB) and Mycobacterium bovis (M. bovis) are closely related pathogenic mycobacteria known to cause chronic pulmonary infections in both humans and animals. Despite sharing nearly identical genomes and virulence factors, these two bacteria display variations in host tropism, epidemiology, and clinical presentations. M. bovis Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis commonly utilized as a vaccine for tuberculosis (TB). Nevertheless, the molecular underpinnings of these distinctions and the intricacies of host-pathogen interactions remain areas of ongoing research. In this study, a comparative transcriptomic analysis was conducted on human leukemia macrophages (THP-1) infected with either MTB H37Rv or M. bovis BCG (Tokyo strain) to elucidate common and strain-specific responses at the transcriptional level. RNA sequencing was utilized to characterize the transcriptomes of human primary macrophages infected with MTB or BCG at 6 and 24 h post-infection. The findings indicate that both MTB and BCG induce substantial and dynamic alterations in the transcriptomes of THP-1, with a notable overlap in the quantity and extent of differentially expressed genes (DEGs). Moreover, gene ontology (GO) enrichment analysis unveiled shared pathways related to immune response, cytokine signaling, and apoptosis. The immune response of macrophages to bacterial infections at 6 h exhibited significantly greater intensity compared to that at 24 h. Furthermore, distinct gene sets displaying notable variances between MTB and BCG infections were identified. The profound impact of MTB infection on macrophage gene expression, particularly within the initial 6 h, was evident. Additionally, downregulation of pathways such as Focal adhesion, Rap1 signaling pathway, and Regulation of actin cytoskeleton was observed. The pathways associated with inflammation reactions and cell apoptosis exhibited significant differences, with BCG triggering macrophage apoptosis and MTB enhancing the survival of intracellular bacteria. Our findings reveal that MTB and BCG provoke similar yet distinct transcriptional responses in human macrophages, indicating variations in their pathogenesis and ability to adapt to host environments. These results offer novel insights into the molecular mechanisms governing host-pathogen interactions and may contribute to a deeper understanding of TB pathogenesis.
Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Vacuna BCG , Macrófagos , Perfilación de la Expresión GénicaRESUMEN
Recent evidence has revealed that small polypeptides (containing fewer than 100 amino acids) can be translated from noncoding RNAs (ncRNAs), which are usually defined as RNA molecules that do not encode proteins. However, studies on functional products translated from primary transcripts of microRNA (pri-miRNA) are quite limited. Here, we describe a peptide termed miPEP31 that is encoded by pri-miRNA-31. miPEP31 is highly expressed in Foxp3+ regulatory T cells (Tregs ) and significantly promotes the differentiation of Tregs without affecting their inhibitory ability. Our results show that miPEP31 is a cell-penetrating peptide both in vitro and in vivo. miPEP31 downregulates miR-31 expression, enhances peripheral Treg induction, and dramatically suppresses experimental autoimmune encephalomyelitis. Mechanistically, we show that miPEP31 acts as a transcriptional repressor inhibiting the expression of miRNA-31, a negative regulator of Tregs . Our results reveal an indispensable role of miPEP31 in maintaining immune homeostasis by promoting Treg differentiation and also present a potential therapeutic peptide for modulating miRNA expression and treating autoimmune diseases.
Asunto(s)
Encefalomielitis Autoinmune Experimental , MicroARNs , Animales , Autoinmunidad/genética , MicroARNs/genética , MicroARNs/metabolismo , Péptidos/genética , Péptidos/metabolismo , Péptidos/farmacología , Linfocitos T Reguladores/metabolismoRESUMEN
Emerging clinical evidence indicates that selective CDK9 inhibition may provide clinical benefits in the management of certain cancers. Many CDK9 selective inhibitors have entered clinical developments, and are being investigated. No clear winner has emerged because of unforeseen toxicity often observed in clinic with these agents. Therefore, a novel agent with differentiated profiles is still desirable. Herein, we report our design, syntheses of a novel azaindole series of selective CDK9 inhibitors. SAR studies led to a preclinical candidate YK-2168. YK2168 exhibited improved CDK9 selectivity over AZD4573 and BAY1251152; also showed differentiated intravenous PK profile and remarkable solid tumor efficacy in a mouse gastric cancer SNU16 CDX model in preclinical studies. YK-2168 is currently in clinical development in China (CTR20212900).
Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Inhibidores de Proteínas Quinasas , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Animales , Humanos , Relación Estructura-Actividad , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacosRESUMEN
Sodium-glucose co-transporter 2 (SGLT2) inhibitor (SGLT2i) is a novel class of anti-diabetic drug, which has displayed a promising benefit for non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effects of SGLT2i against NAFLD and the underlying mechanisms. The db/db mice and western diet-induced NAFLD mice were treated with dapagliflozin (1 mg·kg-1·d-1, i.g.) or canagliflozin (10 mg·kg-1·d-1, i.g.) for 8 weeks. We showed that the SGLT2i significantly improved NAFLD-associated metabolic indexes, and attenuated hepatic steatosis and fibrosis. Notably, SGLT2i reduced the levels of pro-inflammatory cytokines and chemokines, downregulated M1 macrophage marker expression and upregulated M2 macrophage marker expression in liver tissues. In cultured mouse bone marrow-derived macrophages and human peripheral blood mononuclear cell-derived macrophages, the SGLT2i (10, 20 and 40 µmol/L) significantly promoted macrophage polarization from M1 to M2 phenotype. RNA sequencing, Seahorse analysis and liquid chromatography-tandem mass spectrometry analysis revealed that the SGLT2i suppressed glycolysis and triggered metabolic reprogramming in macrophages. By using genetic manipulation and pharmacological inhibition, we identified that the SGLT2i targeted PFKFB3, a key enzyme of glycolysis, to modulate the macrophage polarization of M1 to M2 phenotype. Using a co-culture of macrophages with hepatocytes, we demonstrated that the SGLT2i inhibited lipogenesis in hepatocytes via crosstalk with macrophages. In conclusion, this study highlights a potential therapeutic application for repurposing SGLT2i and identifying a potential target PFKFB3 for NAFLD treatment.
RESUMEN
PURPOSE: This study aims to evaluate whether the third-trimester soluble fms-like tyrosine kinase-1 (sFlt-1) serum levels could be related to placenta accreta spectrum (PAS) disorders and the severity of postpartum blood loss. METHODS: This was a nested case-control study which compared serum sFlt-1 level between gravid women with or without PAS disorders. Spearman correlation analysis was conducted to explore the relationship between sFlt-1 level and the volume of postpartum blood loss. Confounding factors were adjusted to avoid the impact on the results. RESULTS: Sixty gravid women were enrolled: 36 women in the PAS group and 24 women in the non-PAS group. Women in the PAS group had a median sFlt-1 level of 9407.1 [2745.9-21,691.5] pg/ml, whereas women in the non-PAS group had a median sFlt-1 level of 25,779.2 [14317.1-35,626.7] pg/ml, (p < 0.001). The sFlt-1 level was negatively related to the volume of postpartum blood loss (r = - 0.358, p = 0.041). After adjusting for maternal age and gestational age at blood taking, sFlt-1 level showed no significant relationship with PAS disorders (p = 0.245) and postpartum blood loss (p = 0.526). CONCLUSION: Third-trimester sFlt-1 serum level is not independently associated with PAS disorders or postpartum blood loss after adjusting for confounding factors.
Asunto(s)
Placenta Accreta , Tercer Trimestre del Embarazo , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Humanos , Femenino , Embarazo , Placenta Accreta/sangre , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre , Tercer Trimestre del Embarazo/sangre , Adulto , Estudios de Casos y Controles , Hemorragia Posparto/sangre , Biomarcadores/sangreRESUMEN
This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.
Asunto(s)
Supervivencia Celular , Macrófagos , Microplásticos , Supervivencia Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Ratones , Nanopartículas/química , Plásticos/química , Células RAW 264.7 , Expresión Génica/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Residuos/análisis , Tamaño de la PartículaRESUMEN
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system's first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines' polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure-efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure-efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures.
Asunto(s)
Antiinflamatorios , Medicamentos Herbarios Chinos , Medicina Tradicional China , Polisacáridos , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Polisacáridos/química , Polisacáridos/farmacología , Relación Estructura-Actividad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Inflamación/tratamiento farmacológicoRESUMEN
AIM: To explore the prevalence of kinesiophobia in older patients with primary osteoporosis and analyze its influencing factors. METHODS: A cross-sectional survey was conducted among 221 older patients with primary osteoporosis in a general hospital in Kunming, China. Data were collected through a sociodemographic-clinical questionnaire, Tampa Scale for Kinesiophobia-11 (TSK-11), Global Pain Scale (GPS), Five Facets Mindfulness Questionnaire-Short Form (FFMQ-SF), and Hospital Anxiety and Depression Scale (HADS). SPSS 27.0 software was utilized for univariate and binary logistic regression analyses. RESULTS: The findings revealed that the prevalence of kinesiophobia in this study was 57.01 %. Age, history of fractures, chronic obstructive pulmonary disease (COPD), lumbar disc herniation, chronic pain, mindfulness, anxiety, and depression were identified as significant influencing factors of kinesiophobia in the binary logistic regression analyses. CONCLUSION: Healthcare professionals should be attentive to occurrence of kinesiophobia. Timely measures should be implemented to improve pain, anxiety and depression, and employ mindfulness interventions to mitigate kinesiophobia.
Asunto(s)
Osteoporosis , Trastornos Fóbicos , Humanos , Estudios Transversales , Femenino , Masculino , Anciano , Prevalencia , Osteoporosis/psicología , Encuestas y Cuestionarios , China/epidemiología , Trastornos Fóbicos/psicología , Trastornos Fóbicos/epidemiología , Depresión/psicología , Depresión/epidemiología , Ansiedad/psicología , Ansiedad/epidemiología , Persona de Mediana Edad , Anciano de 80 o más Años , KinesiofobiaRESUMEN
BACKGROUND: Accurately detecting a variety of lung abnormalities from heterogenous chest X-ray (CXR) images and writing radiology reports is often difficult and time-consuming. OBJECTIVE: To access the utility of a novel artificial intelligence (AI) system (MOM-ClaSeg) in enhancing the accuracy and efficiency of radiologists in detecting heterogenous lung abnormalities through a multi-reader and multi-case (MRMC) observer performance study. METHODS: Over 36,000 CXR images were retrospectively collected from 12 hospitals over 4 months and used as the experiment group and the control group. In the control group, a double reading method is used in which two radiologists interpret CXR to generate a final report, while in the experiment group, one radiologist generates the final reports based on AI-generated reports. RESULTS: Compared with double reading, the diagnostic accuracy and sensitivity of single reading with AI increases significantly by 1.49% and 10.95%, respectively (Pâ< â0.001), while the difference in specificity is small (0.22%) and without statistical significance (Pâ=â0.255). Additionally, the average image reading and diagnostic time in the experimental group is reduced by 54.70% (Pâ< â0.001). CONCLUSION: This MRMC study demonstrates that MOM-ClaSeg can potentially serve as the first reader to generate the initial diagnostic reports, with a radiologist only reviewing and making minor modifications (if needed) to arrive at the final decision. It also shows that single reading with AI can achieve a higher diagnostic accuracy and efficiency than double reading.
RESUMEN
This study aims to prepare co-loaded indocyanine green(ICG) and elemene(ELE) nano-emulsion(NE) in situ gel(ICG-ELE-NE-gel) and evaluate its physicochemical properties and antitumor activity in vitro. ICG-ELE-NE-gel was prepared by aqueous phase titration and cold solution methods, followed by characterization of the morphology, particle size, corrosion, and photothermal conversion characteristics. The human breast cancer MCF-7 cells were taken as the model, combined with 808 nm laser irradia-tion. Cell inhibition rate test and cell uptake test were performed. ICG-ELE-NE was spherical and uniform in size. The average particle size and Zeta potential were(85.61±0.35) nm and(-21.4±0.6) mV, respectively. The encapsulation efficiency and drug loading rate were 98.51%±0.39% and 10.96%±0.24%, respectively. ICG-ELE-NE-gel had a good photothermal conversion effect and good photothermal stability. The dissolution of ICG-ELE-NE-gel had both temperature and pH-responsive characteristics. Compared with free ELE, ICG-ELE-NE-gel combined with near-infrared light irradiation significantly enhanced the inhibitory effect on MCF-7 cells and could be uptaken in large amounts by MCF-7 cells. ICG-ELE-NE-gel was successfully prepared, and its antitumor activity was enhanced after 808 nm laser irradiation.