Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38894383

RESUMEN

Because of the absence of visual perception, visually impaired individuals encounter various difficulties in their daily lives. This paper proposes a visual aid system designed specifically for visually impaired individuals, aiming to assist and guide them in grasping target objects within a tabletop environment. The system employs a visual perception module that incorporates a semantic visual SLAM algorithm, achieved through the fusion of ORB-SLAM2 and YOLO V5s, enabling the construction of a semantic map of the environment. In the human-machine cooperation module, a depth camera is integrated into a wearable device worn on the hand, while a vibration array feedback device conveys directional information of the target to visually impaired individuals for tactile interaction. To enhance the system's versatility, a Dobot Magician manipulator is also employed to aid visually impaired individuals in grasping tasks. The performance of the semantic visual SLAM algorithm in terms of localization and semantic mapping was thoroughly tested. Additionally, several experiments were conducted to simulate visually impaired individuals' interactions in grasping target objects, effectively verifying the feasibility and effectiveness of the proposed system. Overall, this system demonstrates its capability to assist and guide visually impaired individuals in perceiving and acquiring target objects.


Asunto(s)
Algoritmos , Personas con Daño Visual , Dispositivos Electrónicos Vestibles , Humanos , Personas con Daño Visual/rehabilitación , Fuerza de la Mano/fisiología , Dispositivos de Autoayuda , Percepción Visual/fisiología , Semántica , Masculino
2.
Micromachines (Basel) ; 12(4)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801662

RESUMEN

In traditional hand function assessment, patients and physicians always need to accomplish complex activities and rating tasks. This paper proposes a novel wearable glove system for hand function assessment. A sensing system consisting of 12 nine-axis inertial and magnetic unit (IMMU) sensors is used to obtain the acceleration, angular velocity, and geomagnetic orientation of human hand movements. A complementary filter algorithm is applied to calculate the angles of joints after sensor calibration. A virtual hand model is also developed to map with the glove system in the Unity platform. The experimental results show that this glove system can capture and reproduce human hand motions with high accuracy. This smart glove system is expected to reduce the complexity and time consumption of hand kinematics assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA