Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Virol J ; 20(1): 159, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468949

RESUMEN

BACKGROUND: Hepatitis B surface antigen (HBsAg) consists of six components of large/middle/small HBs proteins (L/M/SHBs) with non-glycosylated (ng)- or glycosylated (g)- isomers at sN146 in their shared S domain. g-SHBs plays a crucial role in hepatitis B virus (HBV) secretion. However, the host and viral factors impacting sN146 status in natural HBV infection remain revealed mainly due to the technical difficulty in quantifying g-SHBs and ng-SHBs in serum samples. METHODS: To establish a standardized Western blot (WB) assay (WB-HBs) for quantifying the SHBs isomers in serum samples of 328 untreated hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) patients with genotype B or C HBV infection. The 1.3-mer HBV genotype B or C plasmids were transiently transfected into HepG2 cells for in vitro study. RESULTS: The median level of ng-SHBs was significantly higher than that of g-SHBs (N = 328) (2.6 vs. 2.0 log10, P < 0.0001). The median g-/ng-SHBs ratio in female patients (N = 75) was significantly higher than that of male patients (N = 253) (0.35 vs. 0.31, P < 0.01) and the median g-/ng-SHBs ratio in genotype C patients (N = 203) was significantly higher than that of the genotype B patients (N = 125) (0.33 vs. 0.29, P < 0.0001). CONCLUSIONS: Our findings suggest that the g-/ng-SHBs ratio is host-sex-biased and viral genotype dependent in treatment naïve patients with HBeAg-positive chronic hepatitis B, which indicates the glycosylation of SHBs could be regulated by both host and viral factors. The change of ratio may reflect the fitness of HBV in patients, which deserves further investigation in a variety of cohorts such as patients with interferon or nucleos(t)ide analogues treatment.


Asunto(s)
Hepatitis B Crónica , Humanos , Masculino , Femenino , Hepatitis B Crónica/tratamiento farmacológico , Antígenos e de la Hepatitis B , Glicosilación , Antivirales/uso terapéutico , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B , Genotipo , ADN Viral , Proteínas de la Membrana/genética
2.
Adv Exp Med Biol ; 1417: 133-139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223863

RESUMEN

Despite the advances in hepatitis E virus (HEV) cell infection models' development, HEV infection efficacy in these cell models is still low, which hampers the further study of molecular mechanism of HEV infection and replication and even the interaction between HEV and host. Along with the advances in the technology for liver organoids generation, major efforts will be made to develop liver organoids for HEV infection. Here, we summarize the entire new and impressive cell culture system of liver organoids and discuss their potential application in HEV infection and pathogenesis. Liver organoids can be generated from tissue-resident cells isolated from biopsies of adult tissues or from iPSCs/ESCs differentiation, which can expand the large-scale experiments such as antiviral drug screening. Different types of liver cells working together can recapitulate the liver organ maintaining the physiological and biochemical microenvironments to support cell morphogenesis, migration, and response to viral infections. Efforts to optimize the protocols for liver organoids generation will speed up the research for HEV infection and pathogenesis and even the antiviral drug identification and evaluation.


Asunto(s)
Virus de la Hepatitis E , Adulto , Humanos , Hígado , Hepatocitos , Antivirales/farmacología , Antivirales/uso terapéutico , Organoides
3.
Gastroenterology ; 154(3): 663-674.e7, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29277559

RESUMEN

BACKGROUND & AIMS: The 4 genotypes of hepatitis E virus (HEV) that infect humans (genotypes 1-4) vary in geographical distribution, transmission, and pathogenesis. Little is known about the properties of HEV or its hosts that contribute to these variations. Primary isolates grow poorly in cell culture; most studies have relied on variants adapted to cancer cell lines, which likely alter virus biology. We investigated the infection and replication of primary isolates of HEV in hepatocyte-like cells (HLCs) derived from human embryonic and induced pluripotent stem cells. METHODS: Using a cell culture-adapted genotype 3 strain and primary isolates of genotypes 1 to 4, we compared viral replication kinetics, sensitivity to drugs, and ability of HEV to activate the innate immune response. We studied HLCs using quantitative reverse-transcriptase polymerase chain reaction and immunofluorescence assay and enzyme-linked immunosorbent assays. We used an embryonic stem cell line that can be induced to express the CRISPR-Cas9 machinery to disrupt the peptidylprolyl isomerase A gene, encoding cyclophilin A (CYPA), a protein reported to inhibit replication of cell culture-adapted HEV. We further modified this line to rescue expression of CYPA before terminal differentiation to HLCs and performed HEV infection studies. RESULTS: HLCs were permissive for infection by nonadapted, primary isolates of HEV genotypes 1 to 4. HEV infection of HLCs induced a replication-dependent type III interferon response. Replication of primary HEV isolates, unlike the cell culture-adapted strain, was not affected by disruption of the peptidylprolyl isomerase A gene or exposure to the CYPA inhibitor cyclosporine A. CONCLUSIONS: Cell culture adaptations alter the replicative capacities of HEV. HLCs offer an improved, physiologically relevant, and genetically tractable system for studying the replication of primary HEV isolates. HLCs could provide a model to aid development of HEV drugs and a system to guide personalized regimens, especially for patients with chronic hepatitis E who have developed resistance to ribavirin.


Asunto(s)
Virus de la Hepatitis E/crecimiento & desarrollo , Hepatocitos/virología , Células Madre Embrionarias Humanas/virología , Células Madre Pluripotentes Inducidas/virología , Replicación Viral , Antivirales/farmacología , Diferenciación Celular , Ciclofilina A/genética , Ciclofilina A/metabolismo , Farmacorresistencia Viral , Genotipo , Células Hep G2 , Virus de la Hepatitis E/efectos de los fármacos , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Hepatocitos/inmunología , Hepatocitos/metabolismo , Interacciones Huésped-Patógeno , Células Madre Embrionarias Humanas/inmunología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Inmunidad Innata , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Cinética , Fenotipo , ARN Viral/genética , Sofosbuvir/farmacología , Factores de Tiempo , Transfección , Replicación Viral/efectos de los fármacos
4.
J Hepatol ; 66(2): 288-296, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27650283

RESUMEN

BACKGROUND & AIMS: As important virological markers, serum hepatitis B surface antigen (HBsAg) and hepatitis B virus (HBV) DNA levels show large fluctuations among chronic hepatitis B patients. The aim of this study was to reveal the potential impact and mechanisms of amino acid substitutions in small hepatitis B surface proteins (SHBs) on serum HBsAg and HBV DNA levels. METHODS: Serum samples from 230 untreated chronic hepatitis B patients with genotype C HBV were analyzed in terms of HBV DNA levels, serological markers of HBV infection and SHBs sequences. In vitro functional analysis of the identified SHBs mutants was performed. RESULTS: Among 230 SHBs sequences, there were 39 (16.96%) sequences with no mutation detected (wild-type) and 191 (83.04%) with single or multiple mutations. SHBs consist of 226 amino acids, of which 104 (46.02%) had mutations in our study. Some mutations (e.g., sE2G, sL21S, sR24K, sT47A/K, sC69stop (sC69∗), sL95W, sL98V, and sG145R) negatively correlated with serum HBsAg levels. HBsAg and HBV DNA levels from this group of patients had a positive correlation (r=0.61, p<0.001). In vitro analysis showed that these mutations reduced extracellular HBsAg and HBV DNA levels by restricting virion secretion and antibody binding capacity. Virion secretion could be rescued for sE2G, sC69∗, and sG145R by co-expression of wild-type HBsAg. CONCLUSION: The serum HBsAg levels were lower in untreated CHB patients with novel SHBs mutations outside the major antigenic region than those without mutations. Underlying mechanisms include impairment of virion secretion and lower binding affinity to antibodies used for HBsAg measurements. LAY SUMMARY: The hepatitis B surface antigen (HBsAg) is a major viral protein of the hepatitis B virus (HBV) secreted into patient blood serum and its quantification value serves as an important marker for the evaluation of chronic HBV infection and antiviral response. We found a few new amino acid substitutions in HBsAg associated with lower serum HBsAg and HBV DNA levels. These different substitutions might impair virion secretion, change the ability of HBsAg to bind to antibodies, or impact HBV replication. These could all result in decreased detectable levels of serum HBsAg. The factors affecting circulating HBsAg level and HBsAg detection are varied and caution is needed when interpreting clinical significance of serum HBsAg levels. Clinical trial number: NCT01088009.


Asunto(s)
ADN Viral , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Hepatitis B Crónica , Adulto , Sustitución de Aminoácidos , ADN Viral/análisis , ADN Viral/sangre , Femenino , Antígenos de Superficie de la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B Crónica/diagnóstico , Hepatitis B Crónica/virología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas Virales/genética , Virión/genética , Virión/aislamiento & purificación , Replicación Viral
5.
J Pharm Anal ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37363744

RESUMEN

Currently, human health due to corona virus disease 2019 (COVID-19) pandemic has been seriously threatened. The coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19. However, the efficacy is compromised by the SARS-CoV-2 evolvement and mutation. Here we report the SARS-CoV-2 S protein receptor-binding domain (RBD) inhibitor licorice-saponin A3 (A3) could widely inhibit RBD of SARS-CoV-2 variants, including Beta, Delta, and Omicron BA.1, XBB and BQ1.1. Furthermore, A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells, with EC50 of 1.016 µM. The mechanism was related with binding with Y453 of RBD determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis combined with quantum mechanics/molecular mechanics (QM/MM) simulations. Interestingly, phosphoproteomics analysis and multi fluorescent immunohistochemistry (mIHC) respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 MAPK pathways and rebalancing the corresponding immune dysregulation. This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.

6.
STAR Protoc ; 3(4): 101802, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36345374

RESUMEN

Here, we present a protocol to characterize the antiviral ability of a protein of interest to SARS-CoV-2 infection in cultured cells, using MUC1 as an example. We use SARS-CoV-2 ΔN trVLP system, which utilizes transcription and replication-competent SARS-CoV-2 virus-like particles lacking nucleocapsid gene. We describe the optimized procedure to analyze protein interference of viral attachment and entry into cells, and qRT-PCR-based quantification of viral infection. The protocol can be applied to characterize more antiviral candidates and clarify their functioning stage. For complete details on the use and execution of this protocol, please refer to Lai et al. (2022).


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Nucleocápside , Línea Celular , Antivirales/farmacología
7.
Nutrients ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35458123

RESUMEN

Despite the presence of hepatitis B virus (HBV) in the human breastmilk of mothers infected with HBV, it has been shown that breastfeeding does not increase the risk of mother-to-child transmission (MTCT) of HBV. We tested the hypothesis that human breastmilk may contain active components that bind to HBV and inhibit the infectivity of HBV. The results show that human whey significantly inhibited the binding of the hepatitis B surface antigen (HBsAg) to its antibodies in competitive inhibition immunoassays. The far-western blotting showed that HBsAg bound to a protein of 80 kD in human whey, which was identified as lactoferrin by mass spectrometry. Competitive inhibition immunoassays further demonstrated that both human lactoferrin and bovine lactoferrin bound to HBsAg. Human whey, human lactoferrin, and bovine lactoferrin each significantly inhibited the infectivity of HBV in vitro. Our results indicate that human breastmilk can bind to HBsAg and inhibit the infectivity of HBV, and the active component is lactoferrin. The findings may explain the reason that breastfeeding has no additional risk for MTCT of HBV, although human breastmilk contains HBV. Our study provides experimental evidence that HBV-infected mothers should be encouraged to breastfeed their infants.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Leche Humana , Femenino , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B/patogenicidad , Humanos , Lactante , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Lactoferrina/farmacología , Leche Humana/inmunología , Embarazo , Complicaciones Infecciosas del Embarazo
8.
Front Microbiol ; 13: 830741, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464922

RESUMEN

Background: The existence of hepatic cancer stem cells (CSCs) contributes to chemotherapy resistance and cancer recurrence after treatment or surgery. However, very little is known about the hepatitis B virus (HBV) replication and its relationship with the stemness of hepatocellular carcinoma (HCC) in HBV-related HCC patients. Methods: We collected tumor tissues (T), matched adjacent non-tumor tissues (NT), and distal non-tumor tissues (FNT) from 55 HCC patients for analysis. Results: We found HBV DNA levels were higher in T samples than NT and FNT samples, but HBV pgRNA and total RNA expressed lower in T samples. HBV pgRNA and total RNA correlate to HBV DNA among the T, NT, and FNT samples. Further evidence for HBV replication in T samples was provided by HBV S, reverse transcriptase, and X genes sequencing, showing that HBV sequences and genotypes differed between T and matched NT and FNT samples. HBV pgRNA and total RNA showed more frequent significant correlations with CSC markers in NT samples in HBsAg-positive patients. The markers CD133 and OCT4 expressed higher in FNT samples, and HBV replication marker of pgRNA levels was significantly positively correlated to these two markers only in FNT samples. The detection of pgRNA and OCT4 in FNT was correlated to the recurrence of HCC in the resection of HCC patients. Analysis of HBV receptor, sodium taurocholate co-transporting polypeptide (NTCP), showed that NTCP was correlated negatively to CSC markers in T samples, except for the CD44. Conclusion: HBV replication may present in HCC with a weak transcriptomic signature. Moreover, the expression level of HBV pgRNA in distal non-tumor tissues is a sensitive marker for HBV replication and prognosis, which is associated with CSC-related markers especially with OCT4 in distal non-tumor tissues and recurrence of HCC in HBV-related HCC patients.

9.
Epigenetics ; 17(2): 133-146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33491544

RESUMEN

Neural tube defects (NTDs) are a group of common and severe congenital malformations. The PI3K-AKT signalling pathway plays a crucial role in the neural tube development. There is limited evidence concerning any possible association between aberrant methylation in PI3K-AKT signalling pathway genes and NTDs. Therefore, we aimed to investigate potential associations between aberrant methylation of PI3K-AKT pathway genes and NTDs. Methylation studies of PI3K-AKT pathway genes utilizing microarray genome-methylation data derived from neural tissues of ten NTD cases and eight non-malformed controls were performed. Targeted DNA methylation analysis was subsequently performed in an independent cohort of 73 NTD cases and 32 controls to validate the methylation levels of identified genes. siRNAs were used to pull-down the target genes in human embryonic stem cells (hESCs) to examine the effects of the aberrant expression of target genes on neural cells. As a result, 321 differentially hypermethylated CpG sites in the promoter regions of 30 PI3K-AKT pathway genes were identified in the microarray data. In target methylation analysis, CHRM1, FGF19, and ITGA7 were confirmed to be significantly hypermethylated in NTD cases and were associated with increased risk for NTDs. The down-regulation of FGF19, CHRM1, and ITGA7 impaired the formation of rosette-like cell aggregates. The down-regulation of those three genes affected the expression of PAX6, SOX2 and MAP2, implying their influence on the differentiation of neural cells. This study for the first time reported that hypermethylation of PI3K-AKT pathway genes such as CHRM1, FGF19, and ITGA7 is associated with human NTDs.


Asunto(s)
Defectos del Tubo Neural , Proteínas Proto-Oncogénicas c-akt , Antígenos CD/genética , Antígenos CD/metabolismo , Metilación de ADN , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Transducción de Señal
10.
iScience ; 25(4): 104136, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35342878

RESUMEN

The global pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection confers great threat to public health. Human breast milk is a complex nutritional composition to nourish infants and protect them from different kinds of infectious diseases including COVID-19. Here, we identified that lactoferrin (LF), mucin1 (MUC1), and α-lactalbumin (α-LA) from human breast milk inhibit SARS-CoV-2 infection using a SARS-CoV-2 pseudovirus system and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). In addition, LF and MUC1 inhibited multiple steps including viral attachment, entry, and postentry replication, whereas α-LA inhibited viral attachment and entry. Importantly, LF, MUC1, and α-LA possess potent antiviral activities toward variants such as B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), and B.1.617.1 (kappa). Taken together, our study provides evidence that human breast milk components (LF, MUC1, and α-LA) are promising antiviral and potential therapeutic candidates warranting further development for treating COVID-19.

11.
J Virol Methods ; 299: 114345, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34728272

RESUMEN

The hepatoma cell lines stably expressing sodium taurocholate cotransporting polypeptide (NTCP), the receptor of hepatitis B virus (HBV) infection, serve as important infection models for studying viral biology and drug discovery. However, the efficiency of infection greatly varies. In this study, we studied the effects and potential mechanisms of Matrigel® hESC-qualified (M-hq), a biological basement membrane matrix commonly used in cell culture, on promotion HBV in vitro infection in HepG2-NTCP cells. For the first time, our findings demonstrate that M-hq could enhance the infection efficiency of cell culture-derived HBV with no impact on the cell viability, the HBV transcription and response to antiviral treatments. The infection enhancement is reproducible and is suggested to occur at HBV attachment step. Our study suggests that this novel system is applicable for studying HBV biology and new drugs.


Asunto(s)
Hepatitis B , Neoplasias Hepáticas , Colágeno , Combinación de Medicamentos , Células Hep G2 , Virus de la Hepatitis B/fisiología , Hepatocitos , Humanos , Laminina , Proteoglicanos , Internalización del Virus
12.
Antiviral Res ; 207: 105406, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36084850

RESUMEN

Members of the tripartite motif (TRIM) protein family strongly induced by interferons (IFNs) are parts of the innate immune system with antiviral activity. However, it is still unclear which TRIMs could play important roles in hepatitis B virus (HBV) inhibition. Here, we identified that TRIM56 expression responded in IFN-treated HepG2-NTCP cells and HBV-infected liver tissues, which was a potent IFN-inducible inhibitor of HBV replication. Mechanistically, TRIM56 suppressed HBV replication via its Ring and C-terminal domain. C-terminal domain was essential for TRIM56 translocating from cytoplasm to nucleus during HBV infection. Further analysis revealed that TRIM56's Ring domain targeted IκBα for ubiquitination. This modification induced phosphorylation of p65, which subsequently inhibited HBV core promoter activity, resulting in the inhibition of HBV replication. The p65 was found to be necessary for NF-κB signal pathway to inhibit HBV replication. We verified our findings using HepG2-NTCP and primary human hepatocytes. Our findings reveal that TRIM56 is a critical antiviral immune effector and exerts an anti-HBV activity via NF-κB signal pathway, which is essential for inhibiting transcription of HBV covalently closed circular DNA.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Antivirales/farmacología , ADN Circular , Humanos , Interferones/farmacología , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Replicación Viral
13.
Stem Cell Reports ; 17(11): 2531-2547, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36270282

RESUMEN

The detailed understanding of fibrogenesis has been hampered by a lack of important functional quiescence characteristics and an in vitro model to recapitulate hepatic stellate cell (HSC) activation. In our study, we establish robust endoderm- and mesoderm-sourced quiescent-like induced HSCs (iHSCs) derived from human pluripotent stem cells. Notably, iHSCs present features of mature HSCs, including accumulation of vitamin A in the lipid droplets and maintained quiescent features. In addition, iHSCs display a fibrogenic response and secrete collagen I in response to hepatoxicity caused by thioacetamide, acetaminophen, and hepatitis B and C virus infection. Antiviral therapy attenuated virally induced iHSC activation. Interestingly, endoderm- and mesoderm-derived iHSCs showed similar iHSC phenotypes. Therefore, we provide a novel and robust method to efficiently generate functional iHSCs from hESC and iPSC differentiation, which could be used as a model for hepatocyte toxicity prediction, anti-liver-fibrosis drug screening, and viral hepatitis-induced liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Células Madre Pluripotentes , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Tioacetamida/toxicidad , Hepatocitos
14.
J Adv Res ; 36: 201-210, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35116174

RESUMEN

Introduction: The COVID-19 global epidemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a great public health emergency. Discovering antiviral drug candidates is urgent for the prevention and treatment of COVID-19. Objectives: This work aims to discover natural SARS-CoV-2 inhibitors from the traditional Chinese herbal medicine licorice. Methods: We screened 125 small molecules from Glycyrrhiza uralensis Fisch. (licorice, Gan-Cao) by virtual ligand screening targeting the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. Potential hit compounds were further evaluated by ELISA, SPR, luciferase assay, antiviral assay and pharmacokinetic study. Results: The triterpenoids licorice-saponin A3 (A3) and glycyrrhetinic acid (GA) could potently inhibit SARS-CoV-2 infection, with EC50 of 75 nM and 3.17 µM, respectively. Moreover, we reveal that A3 mainly targets the nsp7 protein, and GA binds to the spike protein RBD of SARS-CoV-2. Conclusion: In this work, we found GA and A3 from licorice potently inhibit SARS-CoV-2 infection by affecting entry and replication of the virus. Our findings indicate that these triterpenoids may contribute to the clinical efficacy of licorice for COVID-19 and could be promising candidates for antiviral drug development.


Asunto(s)
COVID-19 , Glycyrrhiza , Triterpenos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Triterpenos/farmacología
15.
Front Microbiol ; 12: 687785, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305848

RESUMEN

Genetic variability has significant impacts on biological characteristics and pathogenicity of hepatitis B virus (HBV), in which the N-terminal sequence of the presurface 1 (preS1) region of HBV large surface protein (LHBs) displays genotype (GT) dependent genetic heterogeneity. However, the influence of this heterogeneity on its biological roles is largely unknown. By analyzing 6560 full-length genome sequences of GTA-GTH downloaded from HBVdb database, the preS1 N-terminal sequences were divided into four representative types, namely C-type (representative of GTA, GTB, and GTC), H-type (GTF and GTH), E-type (GTE and GTG), and D-type (GTD), respectively. We artificially substituted the preS1 N-termini of GTC and GTD plasmids or viral strains with each sequence of the four representative types. The roles of preS1 N-terminus on HBV replication, secretion and infectivity were investigated using HepG2 or HepG2-NTCP cells. In the transfection experiments, the results showed that the extracellular HBsAg levels and HBsAg secretion coefficients in D- and E-type strains were significantly higher than those in C- and H-type strains. D-type strain produced more extracellular HBV DNA than C-type strain. We further observed that D-, H-, and E-type strains increased the levels of intracellular replicative HBV DNAs, comparing with C-type strain. In the infection experiments, the levels of extracellular HBeAg, intracellular HBV total RNA and pgRNA/preC mRNA in D- and E-type strains were markedly higher than C and H-type ones. Our data suggest that the preS1 N-termini affect HBV replication, secretion and infectivity in a genotype dependent manner. The C- and H-type strains prefer to attenuate HBsAg secretion, while the strains of D- and E-type promoted infectivity. The existence and function of the intergenotypic shift of preS1 in naturally occurring recombination requires further investigation, as the data we acquired are mostly related to recombinant preS1 region between N-terminus of preS1 from genotypes A-H and the remaining preS1 portion of GTC or GTD.

16.
Antiviral Res ; 189: 105061, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33705864

RESUMEN

Coinfection of hepatitis B virus (HBV) and hepatitis C virus (HCV) may result in severe liver disease and frequent progression to cirrhosis and hepatocellular carcinoma. Clinical evidence suggests that HBV replication is suppressed by replicating HCV and often rebounds after treatment with drugs against HCV. Thus, a highly efficient cell culture system permissive for HBV/HCV would facilitate investigation on the interaction and pathogenesis after coinfection. Here we reported a robust HBV/HCV coinfection cell culture model by overexpressing human sodium-taurocholate cotransporting polypeptide (NTCP), CD81 and Mir122 into HepG2 cells and investigated interactions between HBV and HCV. In this system, HepG2-NTCP/CD81/Mir122 cells not only supported robust infection and replication of HBV and HCV, but also allowed HBV/HCV coinfection in the single cell level. Our result showed cells with replicating HBV still supported HCV infection. However, HBV replication was suppressed by HCV through the inhibition of HBV core promoter and S promoter II activity, and this inhibition was attenuated by the interferon alpha (IFNα) treatment, suggesting HCV influence on HBV at transcriptional level. Coinfection of HBV/HCV in this system did not block IFN stimulated genes expression. Inhibition of HCV by direct-acting antiviral drugs restored HBV replication and expression of viral genes. Conclusions: HepG2-NTCP/CD81/Mir122 fully supports HBV/HCV coinfection, replication and interaction. This novel cell model offers a platform to advance our understanding of the molecular details of the interaction, pathogenesis and outcomes of HBV/HCV coinfection.


Asunto(s)
Hepacivirus/fisiología , Virus de la Hepatitis B/fisiología , Hepatitis B/metabolismo , Hepatitis C/metabolismo , Modelos Biológicos , Interferencia Viral , Antivirales/farmacología , Técnicas de Cultivo de Célula , Coinfección , ADN Viral , Regulación Viral de la Expresión Génica , Células Hep G2 , Hepacivirus/efectos de los fármacos , Hepatitis B/virología , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis C/virología , Humanos , Interferón-alfa/farmacología , MicroARNs/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Regiones Promotoras Genéticas , Simportadores/metabolismo , Tetraspanina 28/metabolismo , Replicación Viral
17.
J Microbiol Immunol Infect ; 53(6): 946-954, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31153830

RESUMEN

BACKGROUND/PURPOSE: Occult HBV infection (OBI) could have serious clinical consequences in patients receiving immunosuppressive therapy. We aimed to investigate the prevalence of OBI in Chinese patients with autoimmune hepatitis (AIH) and to analyze its clinical and virological features. METHODS: 103 AIH cases were enrolled. Hepatitis B virus (HBV) serological markers were screened by chemiluminescence. HBV-DNA were detected by nest-PCR and real-time PCR. HBV genotyping and mutation analysis were performed by Sanger sequencing. RESULTS: Twenty-four out of 103 (23.30%) AIH patients had OBI as evidenced by positive HBV-DNA and negative hepatitis B surface antigen (HBsAg). HBV genotype C is the predominant genotype (57.89%), which had more amino acid (AA) substitutions in S region than that of B-genotype group (P = 0.001). The distribution of AA substitution in the 'α' determinant region between genotype C and B were significantly different (P = 0.042). In addition to those already reported OBI-associated AA substitutions (e.g., sG145R and sV184A), some new OBI-associated AA substitutions (e.g., sV106A, sC137* and sL176P) were found in AIH patients in our study. Three out of 24 (12.50%) OBI patients were diagnosed as decompensated cirrhosis, one patient with S deletion mutation and two patients with HBV extensive AA substitutions. CONCLUSIONS: There was a higher proportion of AIH patients with OBI than the general population in China, which can be either seropositive or seronegative-OBI in AIH patients is associated with some specific AA substitutions. The presence of deletion mutations and the extent of AA substitutions in the HBV S region may have predictive clinical implications.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Hepatitis B/diagnóstico , Hepatitis B/epidemiología , Hepatitis Autoinmune/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Sustitución de Aminoácidos/genética , Niño , China/epidemiología , ADN Viral/análisis , Femenino , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis Autoinmune/tratamiento farmacológico , Humanos , Huésped Inmunocomprometido/inmunología , Terapia de Inmunosupresión/métodos , Inmunosupresores/uso terapéutico , Masculino , Persona de Mediana Edad , Carga Viral , Adulto Joven
18.
Front Microbiol ; 10: 1341, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249567

RESUMEN

Viruses could rapidly diversify into variants, which has long been known to facilitate viral adaption in the host. Recent studies showed that cooperation among variants and wild-type (WT) also increased viral fitness. Here, a mutant of sC69∗ in small hepatitis B surface protein (SHBs) that resulted in premature stop was investigated and the frequency of sC69∗ was 4.37% (19/435), most of which coexisted with the WT (78.95%, 15/19), indicating mixed viral populations. Functional studies showed that sC69∗ mutant was associated with lower viral spread, but could be rescued by coexisting with the WT. The sC69∗ mutant showed to attenuate host innate immune response during infection and poly (I:C) treatment such as IL29, ISG15, and RIG-I (p < 0.05). The lower immune response was not caused by the lower replication of sC69∗ mutant. Our data provide information that sC69∗ coexisting with the WT might facilitate the fitness and persistence of the viral quasispecies in the host.

19.
Infect Genet Evol ; 75: 104006, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31442597

RESUMEN

The hepatitis B surface antigen (HBsAg) is a vital serum marker for hepatitis B virus (HBV) infection. Amino acid (AA) substitutions in small hepatitis B surface protein (SHBs) are known to affect HBsAg level. However, how the genetic backbones of SHBs sequences would affect the roles of a specific AA substitution on HBsAg level remains unclear. In this study, we found that sI126 had a very high substitution detection rate of 17.54% (40/228) in untreated chronic hepatitis B cohort with subgenotype C2 HBV infection. Among different substitution types at sI126, the sI126T (N = 28) was found to be associated with significantly lower serum HBsAg level. Clone sequencing revealed that sI126T-harboring SHBs sequences had varied genetic backbones with zero to nine additional AA substitutions. Thus, we constructed 24 HBsAg expression plasmids harboring sI126T without (plasmid 1, P1) or with (P2-P24) additional AA substitution(s) and studied them in the HepG2 cells. The HBsAg levels were determined by both ELISA and Western blot. In vitro experiments showed that P1 significantly reduced HBsAg level and its secretion (p < .05), however, P2-P24 showed various extracellular and intracellular HBsAg levels. No significant differences were detected among the HBsAg mRNA levels of nine representative mutant plasmids. Our findings suggest that the modulation of HBsAg level by sI126T is affected by additional AA substitution(s) in the S region of HBV. The effects of AA combination substitutions in SHBs sequences on HBsAg levels are worthwhile for more attentions in terms of HBV biology and its clinical application.


Asunto(s)
Sustitución de Aminoácidos , Regulación Viral de la Expresión Génica , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Hepatitis B/virología , Adolescente , Adulto , Biomarcadores , Células Cultivadas , Femenino , Genotipo , Hepatitis B/diagnóstico , Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/química , Humanos , Pruebas de Función Hepática , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven
20.
Viruses ; 11(1)2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669266

RESUMEN

Mutations in hepatitis B virus (HBV) surface promoter II (SPII) have not been well studied in hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) patients. We aimed to investigate SPII mutations in such patients and their biological and clinical impacts. Direct sequencing was used to detect SPII mutations in 106 HBeAg-positive treatment-naïve CHB patients with genotype C (82.1% (87/106) was C2) HBV infection. Results showed that mutation frequency in transcription factor (TF) unbinding region was significantly higher than that in TF binding region of SPII (C1: 3.4% vs. 1.3%; C2: 2.6% vs. 1.3%; p < 0.0001). Luciferase assay revealed distinct promoter activities among SPII mutants; especially SPII of G120A mutant had a 15-fold higher activity than that of wild-type (p < 0.001). In vitro experiments in HepG2 cells showed that G82A, A115C and G120A mutants increased the hepatitis B surface antigen (HBsAg) levels, while C18T had an opposite effect. G82A, A115C and G120A mutants boosted the intracellular HBV total RNA level. G120A mutation resulted in an increased HBV DNA level in vitro, consistent with the serological results in patients. Thus, novel SPII mutations would affect promoter activity, HBsAg, HBV DNA and HBV total RNA levels, suggesting their potential biological and clinical significances.


Asunto(s)
ADN Viral/análisis , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Mutación , Regiones Promotoras Genéticas , Adolescente , Adulto , ADN Viral/sangre , Femenino , Genotipo , Células Hep G2 , Hepatitis B Crónica , Humanos , Masculino , Persona de Mediana Edad , ARN Viral/análisis , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Activación Transcripcional , Carga Viral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA