Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.040
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675497

RESUMEN

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal/fisiología , Encefalopatías Metabólicas/metabolismo , Estrés Psicológico/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Ansiedad/genética , Ansiedad/inmunología , Ansiedad/fisiopatología , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/fisiopatología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Dinámicas Mitocondriales/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología , Análisis de la Célula Individual , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología , Transcriptoma/genética , Xantina/metabolismo
2.
Mol Cell ; 82(6): 1225-1238.e6, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35196517

RESUMEN

The long-range interactions of cis-regulatory elements (cREs) play a central role in gene regulation. cREs can be characterized as accessible chromatin sequences. However, it remains technically challenging to comprehensively identify their spatial interactions. Here, we report a new method HiCAR (Hi-C on accessible regulatory DNA), which utilizes Tn5 transposase and chromatin proximity ligation, for the analysis of open-chromatin-anchored interactions with low-input cells. By applying HiCAR in human embryonic stem cells and lymphoblastoid cells, we demonstrate that HiCAR identifies high-resolution chromatin contacts with an efficiency comparable with that of in situ Hi-C over all distance ranges. Interestingly, we found that the "poised" gene promoters exhibit silencer-like function to repress the expression of distal genes via promoter-promoter interactions. Lastly, we applied HiCAR to 30,000 primary human muscle stem cells and demonstrated that HiCAR is capable of analyzing chromatin accessibility and looping using low-input primary cells and clinical samples.


Asunto(s)
Cromatina , Secuencias Reguladoras de Ácidos Nucleicos , Cromatina/genética , ADN , Regulación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas
3.
Nature ; 607(7919): 480-485, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859196

RESUMEN

Pyroelectricity describes the generation of electricity by temporal temperature change in polar materials1-3. When free-standing pyroelectric materials approach the 2D crystalline limit, how pyroelectricity behaves remained largely unknown. Here, using three model pyroelectric materials whose bonding characters along the out-of-plane direction vary from van der Waals (In2Se3), quasi-van der Waals (CsBiNb2O7) to ionic/covalent (ZnO), we experimentally show the dimensionality effect on pyroelectricity and the relation between lattice dynamics and pyroelectricity. We find that, for all three materials, when the thickness of free-standing sheets becomes small, their pyroelectric coefficients increase rapidly. We show that the material with chemical bonds along the out-of-plane direction exhibits the greatest dimensionality effect. Experimental observations evidence the possible influence of changed phonon dynamics in crystals with reduced thickness on their pyroelectricity. Our findings should stimulate fundamental study on pyroelectricity in ultra-thin materials and inspire technological development for potential pyroelectric applications in thermal imaging and energy harvesting.

4.
Nature ; 612(7940): 503-511, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477535

RESUMEN

The neocortex consists of a vast number of diverse neurons that form distinct layers and intricate circuits at the single-cell resolution to support complex brain functions1. Diverse cell-surface molecules are thought to be key for defining neuronal identity, and they mediate interneuronal interactions for structural and functional organization2-6. However, the precise mechanisms that control the fine neuronal organization of the neocortex remain largely unclear. Here, by integrating in-depth single-cell RNA-sequencing analysis, progenitor lineage labelling and mosaic functional analysis, we report that the diverse yet patterned expression of clustered protocadherins (cPCDHs)-the largest subgroup of the cadherin superfamily of cell-adhesion molecules7-regulates the precise spatial arrangement and synaptic connectivity of excitatory neurons in the mouse neocortex. The expression of cPcdh genes in individual neocortical excitatory neurons is diverse yet exhibits distinct composition patterns linked to their developmental origin and spatial positioning. A reduction in functional cPCDH expression causes a lateral clustering of clonally related excitatory neurons originating from the same neural progenitor and a significant increase in synaptic connectivity. By contrast, overexpression of a single cPCDH isoform leads to a lateral dispersion of clonally related excitatory neurons and a considerable decrease in synaptic connectivity. These results suggest that patterned cPCDH expression biases fine spatial and functional organization of individual neocortical excitatory neurons in the mammalian brain.


Asunto(s)
Regulación de la Expresión Génica , Neocórtex , Protocadherinas , Animales , Ratones , Interneuronas/metabolismo , Neocórtex/anatomía & histología , Neocórtex/citología , Neocórtex/metabolismo , Neuronas/metabolismo , Protocadherinas/genética , Protocadherinas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
5.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38696471

RESUMEN

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Asunto(s)
Proteína BRCA1 , Proteínas de Ciclo Celular , Ratones Noqueados , Oocitos , Oocitos/metabolismo , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Femenino , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Meiosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Roturas del ADN de Doble Cadena , Emparejamiento Cromosómico/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Recombinación Genética , Recombinación Homóloga , Inestabilidad Genómica
6.
Nature ; 580(7801): 106-112, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238932

RESUMEN

Radial glial progenitor cells (RGPs) are the major neural progenitor cells that generate neurons and glia in the developing mammalian cerebral cortex1-4. In RGPs, the centrosome is positioned away from the nucleus at the apical surface of the ventricular zone of the cerebral cortex5-8. However, the molecular basis and precise function of this distinctive subcellular organization of the centrosome are largely unknown. Here we show in mice that anchoring of the centrosome to the apical membrane controls the mechanical properties of cortical RGPs, and consequently their mitotic behaviour and the size and formation of the cortex. The mother centriole in RGPs develops distal appendages that anchor it to the apical membrane. Selective removal of centrosomal protein 83 (CEP83) eliminates these distal appendages and disrupts the anchorage of the centrosome to the apical membrane, resulting in the disorganization of microtubules and stretching and stiffening of the apical membrane. The elimination of CEP83 also activates the mechanically sensitive yes-associated protein (YAP) and promotes the excessive proliferation of RGPs, together with a subsequent overproduction of intermediate progenitor cells, which leads to the formation of an enlarged cortex with abnormal folding. Simultaneous elimination of YAP suppresses the cortical enlargement and folding that is induced by the removal of CEP83. Together, these results indicate a previously unknown role of the centrosome in regulating the mechanical features of neural progenitor cells and the size and configuration of the mammalian cerebral cortex.


Asunto(s)
Centrosoma/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/embriología , Células Ependimogliales/citología , Células-Madre Neurales/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patología , Proliferación Celular , Centriolos/metabolismo , Corteza Cerebral/patología , Femenino , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/patología , Neurogénesis , Proteínas Señalizadoras YAP
7.
Nucleic Acids Res ; 52(11): 6201-6219, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38597673

RESUMEN

Genes encoding the KDM5 family of transcriptional regulators are disrupted in individuals with intellectual disability (ID). To understand the link between KDM5 and ID, we characterized five Drosophila strains harboring missense alleles analogous to those observed in patients. These alleles disrupted neuroanatomical development, cognition and other behaviors, and displayed a transcriptional signature characterized by the downregulation of many ribosomal protein genes. A similar transcriptional profile was observed in KDM5C knockout iPSC-induced human glutamatergic neurons, suggesting an evolutionarily conserved role for KDM5 proteins in regulating this class of gene. In Drosophila, reducing KDM5 changed neuronal ribosome composition, lowered the translation efficiency of mRNAs required for mitochondrial function, and altered mitochondrial metabolism. These data highlight the cellular consequences of altered KDM5-regulated transcriptional programs that could contribute to cognitive and behavioral phenotypes. Moreover, they suggest that KDM5 may be part of a broader network of proteins that influence cognition by regulating protein synthesis.


Asunto(s)
Proteínas de Drosophila , Neuronas , Proteínas Ribosómicas , Animales , Humanos , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Neuronas/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Activación Transcripcional
8.
Plant Physiol ; 195(2): 1642-1659, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38431524

RESUMEN

Maize (Zea mays) smut is a common biotrophic fungal disease caused by Ustilago maydis and leads to low maize yield. Maize resistance to U. maydis is a quantitative trait. However, the molecular mechanism underlying the resistance of maize to U. maydis is poorly understood. Here, we reported that a maize mutant caused by a single gene mutation exhibited defects in both fungal resistance and plant development. maize mutant highly susceptible to U. maydis (mmsu) with a dwarf phenotype forms tumors in the ear. A map-based cloning and allelism test demonstrated that 1 gene encoding a putative arogenate dehydratase/prephenate dehydratase (ADT/PDT) is responsible for the phenotypes of the mmsu and was designated as ZmADT2. Combined transcriptomic and metabolomic analyses revealed that mmsu had substantial differences in multiple metabolic pathways in response to U. maydis infection compared with the wild type. Disruption of ZmADT2 caused damage to the chloroplast ultrastructure and function, metabolic flux redirection, and reduced the amounts of salicylic acid (SA) and lignin, leading to susceptibility to U. maydis and dwarf phenotype. These results suggested that ZmADT2 is required for maintaining metabolic flux, as well as resistance to U. maydis and plant development in maize. Meanwhile, our findings provided insights into the maize response mechanism to U. maydis infection.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Zea mays , Zea mays/microbiología , Zea mays/genética , Zea mays/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Basidiomycota/fisiología , Regulación de la Expresión Génica de las Plantas , Fenotipo , Mutación/genética , Ácido Salicílico/metabolismo , Ustilago/genética
9.
Mol Psychiatry ; 29(3): 767-781, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238548

RESUMEN

BACKGROUND: Although network analysis studies of psychiatric syndromes have increased in recent years, most have emphasized centrality symptoms and robust edges. Broadening the focus to include bridge symptoms within a systematic review could help to elucidate symptoms having the strongest links in network models of psychiatric syndromes. We conducted this systematic review and statistical evaluation of network analyses on depressive and anxiety symptoms to identify the most central symptoms and bridge symptoms, as well as the most robust edge indices of networks. METHODS: A systematic literature search was performed in PubMed, PsycINFO, Web of Science, and EMBASE databases from their inception to May 25, 2022. To determine the most influential symptoms and connections, we analyzed centrality and bridge centrality rankings and aggregated the most robust symptom connections into a summary network. After determining the most central symptoms and bridge symptoms across network models, heterogeneity across studies was examined using linear logistic regression. RESULTS: Thirty-three studies with 78,721 participants were included in this systematic review. Seventeen studies with 23 cross-sectional networks based on the Patient Health Questionnaire (PHQ) and Generalized Anxiety Disorder (GAD-7) assessments of clinical and community samples were examined using centrality scores. Twelve cross-sectional networks based on the PHQ and GAD-7 assessments were examined using bridge centrality scores. We found substantial variability between study samples and network features. 'Sad mood', 'Uncontrollable worry', and 'Worrying too much' were the most central symptoms, while 'Sad mood', 'Restlessness', and 'Motor disturbance' were the most frequent bridge centrality symptoms. In addition, the connection between 'Sleep' and 'Fatigue' was the most frequent edge for the depressive and anxiety symptoms network model. CONCLUSION: Central symptoms, bridge symptoms and robust edges identified in this systematic review can be viewed as potential intervention targets. We also identified gaps in the literature and future directions for network analysis of comorbid depression and anxiety.


Asunto(s)
Ansiedad , Depresión , Humanos , Ansiedad/fisiopatología , Trastornos de Ansiedad , Estudios Transversales , Masculino , Femenino
10.
Chem Soc Rev ; 53(6): 2972-3001, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38345093

RESUMEN

Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.

11.
Med Res Rev ; 44(4): 1404-1445, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38279990

RESUMEN

Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.


Asunto(s)
Enfermedades Neurodegenerativas , Inhibidores de Fosfodiesterasa , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , Animales , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal/efectos de los fármacos
12.
J Am Chem Soc ; 146(8): 5502-5510, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38359445

RESUMEN

Glycoproteins account for numerous biological processes including those associated with diseases and infections. The advancement of glycopeptides has emerged as a promising strategy for unraveling biological pathways and discovering novel medicines. In this arena, a key challenge arises from the absence of efficient synthetic strategies to access glycopeptides and glycoproteins. Here, we present a highly concise approach to bridging saccharides with amino acids and peptides through an amide linkage. Our amide-linked C-glycosyl amino acids and peptides are synthesized through cooperative Ni-catalyzed and photoredox processes. The catalytic process generates a glycosyl radical and an amide carbonyl radical, which subsequently combine to yield the C-glycosyl products. The saccharide reaction partners encompass mono-, di-, and trisaccharides. All 20 natural amino acids, peptides, and their derivatives can efficiently undergo glycosylations with yields ranging from acceptable to high, demonstrating excellent stereoselectivities. As a substantial expansion of applications, we have shown that simple C-glycosyl amino acids can function as versatile building units for constructing C-glycopeptides with intricate spatial complexities.


Asunto(s)
Amidas , Aminoácidos , Níquel/química , Péptidos , Carbohidratos/química , Glicopéptidos , Glicoproteínas , Catálisis
13.
J Am Chem Soc ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970779

RESUMEN

Sulfur hexafluoride (SF6) is extensively employed in the power industry. However, its emissions significantly contribute to the greenhouse effect. The direct recovery of high purity SF6 from industrial waste gases would benefit its sustainable use, yet this represents a considerable challenge. Herein, we report the enrichment of SF6 from SF6/N2 mixtures via adsorptive separation in a stable Co(II)-pyrazolate MOF BUT-53 (BUT: Beijing University of Technology), which features dynamic molecular traps. BUT-53 exhibits an excellent SF6 adsorption uptake of 2.82 mmol/g at 0.1 bar and 298 K, as well as an unprecedented SF6/N2 (10:90) selectivity of 2485. Besides, the remarkable SF6/N2 selectivity of BUT-53 enables recovery of high purity (>99.9%) SF6 from a low concentration (10%) mixture through a breakthrough experiment. The excellent SF6/N2 separation efficiency was also well maintained under humid conditions (RH = 90%) over multiple cycles. Molecular simulation, single-crystal diffraction, and adsorption kinetics studies elucidate the associated adsorption mechanism and water tolerance.

14.
J Am Chem Soc ; 146(8): 5051-5055, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373353

RESUMEN

The construction of quaternary carbon centers via C-C coupling protocols remains challenging. The coupling of tertiary C(sp3) with secondary or tertiary C(sp3) counterparts has been hindered by pronounced steric clashes and many side reactions. Herein, we have successfully developed a type of bisphosphine ligand iron complex-catalyzed coupling reactions of tertiary alkyl halides with secondary alkyl zinc reagents and efficiently realized the coupling reaction between tertiary C(sp3) and secondary C(sp3) with high selectivity for the initial instance, which provided an efficient method for the construction of quaternary carbon centers with high steric hindrance. The combination of an iron catalyst and directing group of the substrate makes the great challenging transformation possible.

15.
J Am Chem Soc ; 146(11): 7210-7215, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38437461

RESUMEN

Transition metal-catalyzed reductive cross-couplings to build C-C/Si bonds have been developed, but the reductive cross-coupling to create the C(sp2)-B bond has not been explored. Herein, we describe a nickel-catalyzed reductive cross-coupling between aryl halides and bromoboranes to construct a C(sp2)-B bond. This protocol offers a convenient approach for the synthesis of a wide range of aryl boronate esters, using readily available starting materials. Mechanistic studies indicate that the key to the success of the reaction is the activation of the B-Br bond of bromoboranes with a Lewis base such as 2-MeO-py. The activation ensures that bromoboranes will react with the active nickel(I) catalyst prior to aryl halides, which is different from the sequence of the general nickel-catalyzed reductive C(sp2)-C/Si cross-coupling, where the oxidative addition of an aryl halide proceeds first. Notably, this approach minimizes the production of undesired homocoupling byproduct without the requirement of excessive quantities of either substrate.

16.
J Am Chem Soc ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842082

RESUMEN

Biological ion channels exhibit switchable cation transport with ultrahigh selectivity for efficient energy conversion, such as Ca2+-activated TRPM4 channels tuned by cation-π interactions, but achieving an analogous highly selective function is challenging in artificial nanochannels. Here, we design a TRPM4-inspired cation-selective nanochannel (CN) assembled by two poly(ether sulfone)s, respectively, with sulfonate acid and indole moieties, which act as cation-selective activators to manage Na+/Cl- selectivity via ionic and cation-π interactions. The cation selectivity of CNs can be activated by Na+, and thereby the Na+ transference number significantly improves from 0.720 to 0.982 (Na+/Cl- selectivity ratio from 2.6 to 54.6) under a 50-fold salinity gradient, surpassing the K+ transference number (0.886) and Li+ transference number (0.900). The TRPM4-inspired nanochannel membrane enabled a maximum output power density of 5.7 W m-2 for salinity-gradient power harvesting. Moreover, a record energy conversion efficiency of up to 46.5% is provided, superior to most nanochannel membranes (below 30%). This work proposes a novel strategy to biomimetic nanochannels for highly selective cation transport and high-efficiency salinity-gradient energy conversion.

17.
Am J Physiol Renal Physiol ; 326(4): F563-F583, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299215

RESUMEN

Despite known drawbacks, rodent models are essential tools in the research of renal development, physiology, and pathogenesis. In the past decade, rodent models have been developed and used to mimic different etiologies of acute kidney injury (AKI), AKI to chronic kidney disease (CKD) transition or progression, and AKI with comorbidities. These models have been applied for both mechanistic research and preclinical drug development. However, current rodent models have their limitations, especially since they often do not fully recapitulate the pathophysiology of AKI in human patients, and thus need further refinement. Here, we discuss the present status of these rodent models, including the pathophysiologic compatibility, clinical translational significance, key factors affecting model consistency, and their main limitations. Future efforts should focus on establishing robust models that simulate the major clinical and molecular phenotypes of human AKI and its progression.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Animales , Humanos , Roedores , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/patología , Riñón/patología , Lesión Renal Aguda/patología
18.
Lab Invest ; 104(2): 100310, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38135155

RESUMEN

Diagnostic methods for Helicobacter pylori infection include, but are not limited to, urea breath test, serum antibody test, fecal antigen test, and rapid urease test. However, these methods suffer drawbacks such as low accuracy, high false-positive rate, complex operations, invasiveness, etc. Therefore, there is a need to develop simple, rapid, and noninvasive detection methods for H. pylori diagnosis. In this study, we propose a novel technique for accurately detecting H. pylori infection through machine learning analysis of surface-enhanced Raman scattering (SERS) spectra of gastric fluid samples that were noninvasively collected from human stomachs via the string test. One hundred participants were recruited to collect gastric fluid samples noninvasively. Therefore, 12,000 SERS spectra (n = 120 spectra/participant) were generated for building machine learning models evaluated by standard metrics in model performance assessment. According to the results, the Light Gradient Boosting Machine algorithm exhibited the best prediction capacity and time efficiency (accuracy = 99.54% and time = 2.61 seconds). Moreover, the Light Gradient Boosting Machine model was blindly tested on 2,000 SERS spectra collected from 100 participants with unknown H. pylori infection status, achieving a prediction accuracy of 82.15% compared with qPCR results. This novel technique is simple and rapid in diagnosing H. pylori infection, potentially complementing current H. pylori diagnostic methods.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/diagnóstico , Espectrometría Raman , Estómago , Ureasa/análisis , Sensibilidad y Especificidad
19.
Anal Chem ; 96(1): 179-187, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38100653

RESUMEN

Achieving accurate detection of different speciations of heavy metal ions (HMIs) in an aqueous solution is an urgent problem due to the different bioavailabilities and physiological toxicity. Herein, we nominated a novel strategy to detect HCrO4- and Cr(OH)2+ at a trace level via the electrochemical sensitive surface constructed by Co3O4-rGO modified with amino and carboxyl groups, which revealed that the interactions between distinct functional groups and different oxygen-containing groups of target ions are conducive to the susceptible and anti-interference detection. The detection sensitivities of 19.46 counts µg-1 L for HCrO4- and 13.44 counts µg-1 L for Cr(OH)2+ were obtained under optimal conditions, while the limits of detection were 0.10 and 0.12 µg L-1, respectively. Satisfactory anti-interference and actual water sample analysis results were obtained. A series of advanced optical techniques like X-ray photoelectron spectroscopy, X-ray absorption near-edge structure technology, and density functional theory calculations under an electric field demonstrated that chemical interactions between groups contribute more to the fixation of target ions than electrical attraction alone. The presence of oxygen-containing groups distinct from simple ionic forms was a critical factor in the selectivity and anti-interference detection. Furthermore, the valence cycle of Co(II)/(III) synergistically boosted the detection performance. This research provides a promising tactic from the microscopic perspective of groups' interactions to accomplish the precise speciation analysis of HMIs in the water environment.

20.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797860

RESUMEN

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Asunto(s)
Grano Comestible , Endospermo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Sistemas CRISPR-Cas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA