Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Anal Chem ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975729

RESUMEN

Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.

2.
Glob Chang Biol ; 30(1): e17111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273581

RESUMEN

While there is an extensive body of research on the influence of climate warming on total soil microbial communities, our understanding of how rhizosphere and non-rhizosphere soil microorganisms respond to warming remains limited. To address this knowledge gap, we investigated the impact of 4 years of soil warming on the diversity and composition of microbial communities in the rhizosphere and non-rhizosphere soil of a temperate steppe, focusing on changes in root exudation rates and exudate compositions. We used open top chambers to simulate warming conditions, resulting in an average soil temperature increase of 1.1°C over a span of 4 years. Our results showed that, in the non-rhizosphere soil, warming had no significant impact on dissolved organic carbon concentrations, compositions, or the abundance of soil microbial functional genes related to carbon and nitrogen cycling. Moreover, soil microbial diversity and community composition remained largely unaffected, although warming resulted in increased complexity of soil bacteria and fungi in the non-rhizosphere soil. In contrast, warming resulted in a substantial decrease in root exudate carbon (by 19%) and nitrogen (by 12%) concentrations and induced changes in root exudate compositions, primarily characterized by a reduction in the abundance in alcohols, coenzymes and vitamins, and phenylpropanoids and polyketides. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil. The study of soil microbial structure and function in rhizosphere and non-rhizosphere soil provides an ideal setting for understanding mechanisms for governing rhizosphere and non-rhizosphere soil carbon and nitrogen cycles. Our results highlight the distinctly varied responses of soil microorganisms in the rhizosphere and non-rhizosphere soil to climate warming. This suggests the need for models to address these processes individually, enabling more accurate predictions of the impacts of climate change on terrestrial carbon cycling.


Asunto(s)
Rizosfera , Suelo , Suelo/química , Microbiología del Suelo , Carbono/metabolismo , Nitrógeno/metabolismo
3.
Microb Ecol ; 86(4): 2870-2881, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37620628

RESUMEN

In the fragile Sanjiangyuan (SJY) agro-pasture ecotone of the Qinghai-Tibetan Plateau (QTP), planting and fencing have been used to alleviate grassland degradation and to provide high-quality grass seeds for the implementation of the project of "grain for green". The soil microbe is the major driving factor in maintaining plant productivity and soil nutrient cycling. However, few studies have explored the effects of planting and fencing on soil microorganisms in the SJY agro-pasture ecotone. We explored the effects of tilling (TG) and fencing after tilling (FTG) on soil microbial communities to reveal the effects of restoration measures on soil microbes and to provide a reference in assessing and improving ecosystem structure. The results showed that restoration measures increased soil microbial species diversity and significantly changed their community structure. We found, the microbial composition was more complex under FTG, and its fungal variability was higher and more similar to that of natural grassland. Additionally, restoration measures resulted in fungal co-occurrence network was more edges, higher density, larger diameter and more positive interactions. This was due to the management of the vegetation-soil microenvironment by FTG inducing a differentiation of microbial community structure. In summary, the implementation of FTG could change the microenvironment in the SJY agro-pasture ecotone, so that variation in the structure of microbial community tended toward that of natural grassland, and increased the stability of microbial co-occurrence network, which was more obvious in the fungal community. HIGHLIGHTS: • Restoration measures have changed the vegetation characteristics and soil microenvironment. • Fencing after tilling (FTG) has brought the microenvironment closer to natural grassland. • FTG significantly increased microbial unique ASVs. The number of fungal unique ASVs was similar to that of natural grassland. • FTG resulted in changes in microbial community structure towards natural grasslands and increased the stability of the microbial co-occurrence network, which was more apparent in the fungal community.


Asunto(s)
Microbiota , Suelo , Suelo/química , Pradera , Tibet , Microbiología del Suelo , Plantas
4.
Proc Natl Acad Sci U S A ; 116(36): 18126-18131, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31431532

RESUMEN

The R2R3-MYB transcription factor FOUR LIPS (FLP) controls the stomatal terminal division through transcriptional repression of the cell cycle genes CYCLIN-DEPENDENT KINASE (CDK) B1s (CDKB1s), CDKA;1, and CYCLIN A2s (CYCA2s). We mutagenized the weak mutant allele flp-1 seeds with ethylmethane sulfonate and screened out a flp-1 suppressor 1 (fsp1) that suppressed the flp-1 stomatal cluster phenotype. FSP1 encodes RPA2a subunit of Replication Protein A (RPA) complexes that play important roles in DNA replication, recombination, and repair. Here, we show that FSP1/RPA2a functions together with CDKB1s and CYCA2s in restricting stomatal precursor proliferation, ensuring the stomatal terminal division and maintaining a normal guard-cell size and DNA content. Furthermore, we provide direct evidence for the existence of an evolutionarily conserved, but plant-specific, CDK-mediated RPA regulatory pathway. Serine-11 and Serine-21 at the N terminus of RPA2a are CDK phosphorylation target residues. The expression of the phosphorylation-mimic variant RPA2aS11,21/D partially complemented the defective cell division and DNA damage hypersensitivity in cdkb1;1 1;2 mutants. Thus, our study provides a mechanistic understanding of the CDK-mediated phosphorylation of RPA in the precise control of cell cycle and DNA repair in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Estomas de Plantas/metabolismo , Proteína de Replicación A/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quinasas Ciclina-Dependientes/genética , Reparación del ADN , Mutación , Fosforilación/genética , Proteína de Replicación A/genética
5.
Glob Chang Biol ; 26(4): 2534-2543, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31873968

RESUMEN

Carbon (C) and nitrogen (N) are the primary elements involved in the growth and development of plants. The C:N ratio is an indicator of nitrogen use efficiency (NUE) and an input parameter for some ecological and ecosystem models. However, knowledge remains limited about the convergent or divergent variation in the C:N ratios among different plant organs (e.g., leaf, branch, trunk, and root) and how evolution and environment affect the coefficient shifts. Using systematic measurements of the leaf-branch-trunk-root of 2,139 species from tropical to cold-temperate forests, we comprehensively evaluated variation in C:N ratio in different organs in different taxa and forest types. The ratios showed convergence in the direction of change but divergence in the rate of change. Plants evolved toward lower C:N ratios in the leaf and branch, with N playing a more important role than C. The C:N ratio of plant organs (except for the leaf) was constrained by phylogeny, but not strongly. Both the change of C:N during evolution and its spatial variation (lower C:N ratio at midlatitudes) help develop the adaptive growth hypothesis. That is, plants with a higher C:N ratio promote NUE under strong N-limited conditions to ensure survival priority, whereas plants with a lower C:N ratio under less N-limited environments benefit growth priority. In nature, larger proportion of species with a high C:N ratio enabled communities to inhabit more N-limited conditions. Our results provide new insights on the evolution and drivers of C:N ratio among different plant organs, as well as provide a quantitative basis to optimize land surface process models.

6.
Front Plant Sci ; 14: 1297399, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130486

RESUMEN

Introduction: Owing to challenges in the study of complex rhizosphere and endophytic microbial communities, the composition and function of such microbial communities in steppe ecosystems remain elusive. Here, we studied the microbial communities of the rhizosphere and endophytic microbes of the dominant plant species across the Inner Mongolian steppes using metagenomic sequencing and investigated their relationships with changes in mean annual temperature (MAT) and mean annual precipitation (MAP). Methods: Metagenomic sequencing based on Illumina high-throughput sequencing, using the paired end method to construct a small fragment library for sequencing. Results: Adaptation of root systems to the environment affected the composition and function of rhizosphere and endophytic microbial communities. However, these communities exhibited distinct community assembly and environmental adaptation patterns. Both rhizosphere and endophytic microbial communities can be divided into two unrelated systems based on their ecological niches. The composition and function of the rhizosphere microbial communities were mainly influenced by MAT, while those of the endophytic microbial communities were mainly influenced by MAP. MAT affected the growth, reproduction, and lipid decomposition of rhizosphere microorganisms, whereas MAP affected reverse transcription and cell wall/membrane/envelope biogenic functions of endophytic microorganisms. Conclusion: Our findings reveal the composition and function of the rhizosphere and endophytic microbial communities in response to changes in MAP and MAT, which has important implications for future biogeography and climate change research.

7.
Plants (Basel) ; 12(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771714

RESUMEN

Root exudates, as an important form of material input from plants to the soil, regulate the carbon input and efflux of plant rhizosphere soil and play an important role in maintaining the carbon and nutrient balance of the whole ecosystem. Root exudates are notoriously difficult to collect due to their underlying characteristics (e.g., low concentration and fast turnover rate) and the associated methodological challenges of accurately measuring root exudates in native soils. As a result, up until now, it has been difficult to accurately quantify the soil organic carbon input from root exudates to the soil in most studies. In recent years, the contribution and ecological effects of root exudates to soil organic carbon input and efflux have been paid more and more attention. However, the ecological mechanism of soil organic carbon input and efflux mediated by root exudates are rarely analyzed comprehensively. In this review, the main processes and influencing factors of soil organic carbon input and efflux mediated by root exudates are demonstrated. Soil minerals and soil microbes play key roles in the processes. The carbon allocation from plants to soil is influenced by the relationship between root exudates and root functional traits. Compared with the quantity of root exudates, the response of root exudate quality to environmental changes affects soil carbon function more. In the future, the contribution of root exudates in different plants to soil carbon turnover and their relationship with soil nutrient availability will be accurately quantified, which will be helpful to understand the mechanism of soil organic carbon sequestration.

8.
J Fungi (Basel) ; 9(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37233260

RESUMEN

Soil moisture content (SWC) can change the diversity and composition of soil fungal communities by affecting soil texture and soil nutrients. To explore the response of soil fungal communities to moisture in the grassland ecosystem on the south shore of Hulun Lake, we set up a natural moisture gradient that was subdivided into high (HW), medium (MW), and low (LW) water contents. Vegetation was investigated by quadrat method, and aboveground biomass was collected by the mowing method. Soil physicochemical properties were obtained by internal experiments. The composition of the soil fungal community was determined using high-throughput sequencing technology. The results showed significant differences in soil texture, nutrients, and fungal species diversity under the moisture gradients. Although there was significant clustering of fungal communities in different treatments, the fungal community composition was not significantly different. According to the phylogenetic tree, the Ascomycota and Basidiomycota were the most important branches. The fungal species diversity was smaller when SWC was higher, and in this environment (HW), the fungal-dominant species were significantly related to SWC and soil nutrients. At this time, soil clay formed a protective barrier for the survival of the dominant classes Sordariomycetes and Dothideomycetes and increased their relative abundance. In summary, the fungal community responded significantly to SWC on the southern shore of the Hulun Lake ecosystem in Inner Mongolia, China, and the fungal community composition of the HW group was stable and easier to survive.

9.
Food Res Int ; 173(Pt 1): 113262, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803575

RESUMEN

This study investigated the effects of smoke derived from cypress (CY), mulberry (MU), metasequoia (ME), pine (PI), and camphor (CA) on the heterocyclic aromatic amines (HAs), flavor, and sensory attributes of smoked pork patty. The results showed that the smoke derived from the five kinds of wood and the flavor of the corresponding smoked meat were classified into three types. Moreover, the smoke of CY and PI, and the smoke of MU and ME can be classified into one category respectively, which significantly improved the flavor of the smoked meat. Both free and protein-bound HAs were detected in smoked meat, while the smoking process significantly increased the HAs content, especially free Norharman (3.26 ng/g in control meat, and 82.24 ng/g in meat smoked with CY). Correlation analysis showed that various volatile organic compounds (VOCs) and HAs were closely associated. Future research should pay attention to the VOCs in smoked meat including vanillin, Close attention should be paid to tridecane and crotonic acid, as well as tetradecane and α-Dehydro-ar-himachalene in smoke, which were consistently correlated with various HAs and may participate in HAs formation. These results may reveal how the smoking process influences the formation of HAs and which factors should be targeted to inhibit HAs in smoked meat products.


Asunto(s)
Carne de Cerdo , Carne Roja , Compuestos Orgánicos Volátiles , Animales , Porcinos , Humo , Compuestos Orgánicos Volátiles/análisis , Madera/química , Nicotiana , Aminas/análisis
10.
Sci Total Environ ; 844: 157155, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35798121

RESUMEN

Sulfur (S) is a functional element that plays an important role in abiotic stress resistance and environmental adaptation in plants. However, knowledge of the biogeographic patterns of S among major plant organs remains limited. We conducted a methodologically consistent field survey of 2745 plant species across 78 typical communities throughout China. From this, we constructed a new matched database of S content in leaves, twigs, trunks, and roots to explore S allocation strategies in plants to better understand the regulatory mechanisms on a large scale. The average S content in leaves, twigs, trunks, and roots of plants in China was 2.32 ± 0.04, 1.13 ± 0.02, 0.15 ± 0.01, and 1.23 ± 0.02 g kg-1, respectively. S content was significantly higher in leaves than in other organs, and S content of plants in deserts was higher than that of plants in forests and grasslands. S content changed faster in roots and showed divergent allocation relationships among organs across communities at different scales. Climate and soil properties jointly regulated the spatial variation and allocation relationships of S among different organs. This study further broadens our understanding of the biological functions of S and their role in the interactions between plants and the environment.


Asunto(s)
Bosques , Plantas , China , Hojas de la Planta , Raíces de Plantas , Suelo , Azufre
11.
Front Microbiol ; 13: 906818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774466

RESUMEN

The response of soil microorganisms to altered nitrogen (N) and rainfall patterns plays an important role in understanding ecosystem carbon and nitrogen cycling processes under global change. Previous studies have separately focused on the effects of N addition and rainfall on soil microbial diversity and community composition. However, the combined and interactive impact of N addition and rainfall on soil microbial diversity and function mediated by plant and soil processes have been poorly investigated for grassland ecosystems. Here, we conducted a field experiment with simulated N addition (N addition: 10 g N m-2yr-1) and altered rainfall pattern [control, rainfall reduction (compared to control -50%); rainfall addition (compared to control + 50%)] to study their interactive effects on soil microbial diversity and function in a temperate steppe of Inner Mongolia. Our results showed that N addition and rainfall addition significantly increased soil bacterial diversity, and the bacterial diversity was positively correlated with soil microbial biomass nitrogen, inorganic nitrogen, and Stipa krylovii root exudate C:N ratio, Allium polyrhizum root exudate C and N, and A. polyrhizum root exudate C:N ratio. N addition and rainfall reduction significantly reduced fungal diversity, which correlated closely with soil microbial biomass carbon and the C:N ratio of A. polyrhizum root exudates. Bacteria were mainly eutrophic r-strategists, and the responses of bacterial function guilds to the interaction between N addition and rainfall pattern were not significant. However, the arbuscular mycorrhizal fungi (AMF), in the functional classification of fungi, were significantly reduced under the condition of N addition and rainfall reduction, and the absolute abundance of the phylum Glomeromycota increased under rainfall addition, suggesting that AMFs are sensitive to altered N and rainfall patterns over short timescales (1 year). Collectively, our results have important implications for understanding the plant-soil-microbe system of grasslands under climate change.

12.
Medicine (Baltimore) ; 101(32): e29940, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960117

RESUMEN

OBJECTIVE: To investigate the efficacy of high-frequency oscillatory ventilation (HFOV) combined with pulmonary surfactant (PS) in the treatment of neonatal respiratory distress syndrome (NRDS). METHODS: This study is a retrospective clinical study. Seventy-two NRDS neonates were selected as the subjects from November 2019 to November 2020, and divided into observation group (40 cases, HFOV treatment) and control group (32 cases, conventional mechanical ventilation treatment). All cases were treated with PS and comprehensive treatment. The therapeutic effect, arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), Percentage of inhaled oxygen concentration (FiO2), mean arterialpressure, oxygenation index (OI), and complications were compared in the 2 groups. RESULTS: The total effective rate of the observation group was 90.0%, significantly higher than that of the control group. After treatment, the observation group has higher PaO2 levels and lower levels of PaCO2, mean arterial pressure, FiO2, and OI than the control group. There was no significant difference in the incidence of complications between the 2 groups. CONCLUSION: HFOV combined with PS has a significant effect on NRDS, which can improve the arterial blood gas index without increasing the incidence of complications.


Asunto(s)
Ventilación de Alta Frecuencia , Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Humanos , Recién Nacido , Oxígeno/uso terapéutico , Surfactantes Pulmonares/uso terapéutico , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Estudios Retrospectivos , Ventiladores Mecánicos
13.
Foods ; 11(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36429279

RESUMEN

In this study, UPLC-MS/MS was used to study the effects of smoking duration and temperature on the formation of heterocyclic amines (HAs) in smoke-processed meat patties. Four kinds of free HAs­including F-7,8-DiMeIQx; F-MeAαC; F-Harman and F-Norharman­and six kinds of protein-bound HAs­including B-AαC; B-7,8-DiMeIQx; B-Glu-p-1; B-MeAαC; B-Harman and B-Norharman­were detected and quantified. Among the free HAs, we observed a 23-fold content increase (p < 0.05), from 0−4 h (at 0 h and 4 h they were 4.24 ng·g−1 and 98.33 ng·g−1, respectively), and the content of the free HAs decreased to 78.80 ng·g−1, at 5 h. At the same time, the free HAs content increased from 53.52 ng·g−1, at 50 °C, to 127.16 ng·g−1, at 60 °C, and then decreased continuously. The content of the free HAs was the highest at 60 °C. For the protein-bound HAs, their content was found to generally decrease with the increase in smoking duration and temperature. However, at 5 h, the content of protein-bound HAs slightly increased to 984.2 ng·g−1. Meanwhile, at 90 °C, it increased to 1643.53 ng·g−1. Additionally, a total of 16 volatile organic compounds (VOCs) were found in all of the meat samples, of which 10 VOCs (one acid, three aldehydes and seven phenols) were significantly related to the formation of free HAs. These findings showed that all the different types of HAs were produced under low-temperature processing, which provided scientific insights into the potential generation of HAs during meat smoking processes and could be used as a reference to minimize the risks of cancer related to the consumption of smoked meat products.

14.
Artículo en Inglés | MEDLINE | ID: mdl-34770001

RESUMEN

Assessing the health of the ecosystem based on the landscape pattern of national parks can facilitate policy makers in formulating more targeted conservation policies to better manage national park ecosystems. To analyze the landscape patterns and characteristics of the national park, the ecosystem health evaluation index system of the national park was constructed using the vigor-organization-resilience (VOR) model to evaluate the health status. In this study, the Shennongjia National Park in China was selected as a case study area to be assessed using the index system. The results revealed that the patches of construction land and farmland are the largest in number and the most complex in shape, reflecting the obvious fragmentation of construction land and farmland patches. All patch types in this national park were evenly distributed. The results of the analysis showed that the comprehensive index of national park heath, according to the VOR model, is 0.74, indicating that the ecosystems in this study area were in a good state of health. Ecosystems in strictly protected areas of this park had the highest ecosystem health index levels, while the traditional utilization areas had the lowest. Ecosystem health levels were characterized by significant spatial agglomeration characteristics, with high-high aggregation distribution areas, mainly clustered in strictly protected areas, and low-low aggregation distribution, mainly clustered in traditional utilization areas and marginal areas. This study provided a set of ecosystem health assessment systems and their practical use in China's newly established national parks.


Asunto(s)
Ecosistema , Parques Recreativos , China , Conservación de los Recursos Naturales , Granjas
15.
Sci Total Environ ; 792: 148409, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34146803

RESUMEN

As a significant environmental issue, global warming will have a significant impact on soil microorganisms, especially soil bacteria. However, the effects of warming on the network structure of bacterial communities and the function of ecosystems remain unclear. Therefore, we examined the effects of three-year simulated field warming on the complexity of soil bacterial communities and predicted functions in a temperate steppe of Inner Mongolia. Warming significantly increased the α-diversity of bacteria in 2018 but did not affect it in 2019 and 2020. Warming increased network complexity and stability and keystone taxa, and these bacterial taxa also associated more closely with each other, indicating that the protection of interactions between bacterial taxa is very important for the conservation of biodiversity. Warming significantly increased aerobic chemoheterotrophy, ureolysis, and chemoheterotrophy, suggesting that warming increased the ability of bacteria to decompose organic matter and the emission of greenhouse gases, such as CO2 and CH4. Collectively, warming will alter soil bacterial community structure and its potential functions, further affecting key functions in grassland belowground ecosystems.


Asunto(s)
Ecosistema , Microbiología del Suelo , Bacterias/genética , Biodiversidad , Pradera , Suelo
16.
Trends Ecol Evol ; 35(10): 908-918, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32595068

RESUMEN

Functional traits are frequently used to evaluate plant adaptation across environments. Yet, traits tend to have multiple functions and interactions, which cannot be accounted for in traditional correlation analyses. Plant trait networks (PTNs) clarify complex relationships among traits, enable the calculation of metrics for the topology of trait coordination and the importance of given traits in PTNs, and how they shift across communities. Recent studies of PTNs provide new insights into some important topics, including trait dimensionality, trait spectra (including the leaf economic spectrum), stoichiometric principles, and the variation of phenotypic integration along gradients of resource availability. PTNs provide improved resolution of the multiple dimensions of plant adaptation across scales and responses to shifting resources, disturbance regimes, and global change.


Asunto(s)
Hojas de la Planta , Plantas , Aclimatación , Fenotipo
17.
Front Plant Sci ; 10: 1298, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708942

RESUMEN

Carbon dynamics in forests and in particular in soils are of primary importance in the context of climate change. A better understanding of the drivers controlling carbon storage is needed to improve climate mitigation strategies. Carbon storage is the result of a balance between inputs and outputs. Carbon inputs in the soil come from plant residues and root exudates, which are further transformed by microorganisms and stored in the long term. Here, we measured litter and fine-root production in three mixed forests dominated by Pinus koraiensis along a latitudinal gradient and performed a litterbag experiment to better understand the driving factors of decomposition. We found that over the three sites litter production was controlled by climatic factors, soil properties, and forest stand characteristics, whereas decay rates were mainly controlled by microbial community structure and soil stoichiometry. For fine roots, production differed among sites, and higher production was consistently observed in the top soil layers compared to deep soil, although the root distribution along the soil profile differed among sites. Fine-root decay rates were mainly controlled by fine-root stoichiometric characteristics. This article emphasizes the complexity of fine-root dynamics even for a single species. Environmental drivers impact on both production and decay, and we suggest performing manipulative field experiments to better identify the mechanisms involved in soil carbon cycling.

18.
Sci Total Environ ; 626: 1193-1199, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29898526

RESUMEN

Methane (CH4) is widely present in groundwater. Dissolved CH4 in groundwater is less understood when compared with that in wetlands. In this study, the concentrations and origin of dissolved CH4 in groundwater were investigated and the potential importance of groundwater CH4 emissions in arid and semi-arid regions of Inner Mongolia was discussed. Groundwater was extracted from domestic wells using a submersible pump or manual power and was analyzed for CH4 concentrations, δ13C-CH4, and physico-chemical variables. The results show that the concentrations of dissolved CH4 in groundwater had large spatial variability, ranging from 0 to 0.10 mg L-1 with a mean of 0.01 mg L-1 in Xilingol and from 0 to 8.99 mg L-1 with a mean of 1.44 mg L-1 in Xingan-Tongliao. Substantial CH4 concentrations of about 2.5-5.5 mg L-1 were found in central areas of Xingan-Tongliao in the winter and the summer. The δ13C-CH4 of about -85‰ was highly depleted while CH4 concentration was significantly negatively correlated with SO42- concentration, indicating that dissolved CH4 in groundwater was microbial in origin. This study suggests that groundwater as a source of CH4 might have great implications in arid and semi-arid regions worldwide and should deserve more research.

19.
Front Plant Sci ; 8: 2040, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29234343

RESUMEN

Globally, many terrestrial ecosystems are experiencing a rapid loss of biodiversity. Continued improvements in our understanding of interrelationships between plant diversity and soil microbes are critical to address the concern over the consequences of the decline in biodiversity on ecosystem functioning and services. By removing forbs, or grasses, or, to an extreme scenario, both forbs and grasses in a steppe vegetation in Inner Mongolia, we studied how plant functional group (PFG) loss affects soil microbial community composition using phospholipid fatty acid analysis (PLFA) and litter decomposition using a litter-bag method. PFG loss significantly decreased above- and below-ground plant biomass, soil microbial biomass carbon (SMBC) and nitrogen (SMBN), but had no effect on the ratio of SMBC to SMBN. Although the ratio of fungal to bacterial PLFAs remained unaffected, PFG loss significantly reduced the amount of bacterial, fungal, and total PLFAs. PFG loss decreased litter monthly mass loss and decay constant, and such decrease was significant when both forbs and grasses were removed. Our results provide robust evidence that PFG loss in grassland ecosystem can lead to a rapid response of soil microbial activity which may affect litter decomposition and soil nutrient cycling, suggesting that the assessment of plant-microbe interactions in soils is an integral component of ecosystem response to biodiversity loss.

20.
Tree Physiol ; 23(8): 505-16, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12730042

RESUMEN

We estimated above- and belowground biomass and net primary production (NPP) of a 73-year-old Scots pine (Pinus sylvestris L.) forest stand in the Belgian Campine region. Total biomass for the stand was 176 Mg ha(-1), of which 74.4% was found in stems. The root system contained 12.6% of total biomass, most of it in coarse roots (> 5 mm). Fine roots (< 5 mm) comprised only about 1.7% of total biomass, and more than 50% of fine root biomass was retrieved in the litter layer and the upper 15 cm of the mineral soil. The ratio of belowground biomass to aboveground biomass was 0.14, which is lower than that of other Scots pine forests and other coniferous forests. Between 1995 and 2001, mean annual NPP was 11.2 Mg ha(-1) year(-1), of which 68.7% was allocated to aboveground compartments. Stems, needles and cones made relatively high contributions to total NPP compared with branches. However, branch NPP was possibly underestimated because litterfall of big branches was neglected. The proportion of total NPP in belowground components was 31.3%. Coarse root NPP (2% of total) was low compared with its biomass. Fine root NPP was 3.3 Mg ha(-1) year(-1), representing about 29.5% of total NPP; however, the estimate of fine root NPP is much more uncertain than NPP of aboveground compartments. The ratio NPP/GPP (gross primary production) was 0.32, which was low compared with other coniferous forests.


Asunto(s)
Biomasa , Pinus/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Bélgica , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA