Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Drug Dev Res ; 85(1): e22128, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984820

RESUMEN

In a search for novel nonsugar α-glucosidase inhibitors for diabetes treatment, a series of N-(phenylsulfonyl)thiazole-2-carboxamide derivatives were designed and synthesized, the α-glucosidase inhibitory activities were then evaluated. Several compounds with promising α-glucosidase inhibitory effects were identified. Among these, compound W24 which shows low cytotoxicity and good α-glucosidase inhibitory activity with an IC50 value of 53.0 ± 7.7 µM, is more competitive compared with the commercially available drug acarbose (IC50 = 228.3 ± 9.2 µM). W24 was identified as a promising candidate in the development of α-glucosidase inhibitors. Molecular docking studies and molecular dynamics simulation were also performed to reveal the binding pattern of the active compound to α-glucosidase, and the binding free energy of the best compound W24 was 36.3403 ± 3.91 kcal/mol.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Tiazoles , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiazoles/farmacología , Tiazoles/química , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Estructura Molecular
2.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339148

RESUMEN

Pseudomonas aeruginosa is a clinically challenging pathogen due to its high resistance to antibiotics. Quorum sensing inhibitors (QSIs) have been proposed as a promising strategy to overcome this resistance by interfering with the bacterial communication system. Among the potential targets of QSIs, PqsR is a key regulator of quorum sensing in Pseudomonas aeruginosa. However, the current research on PqsR inhibitors is limited by the lack of diversity in the chemical structures and the screening methods. Therefore, this study aims to develop a multidimensional screening model for PqsR inhibitors based on both ligand- and receptor-based approaches. First, a pharmacophore model was constructed from a training set of PqsR inhibitors to identify the essential features and spatial arrangement for the activity. Then, molecular docking and dynamics simulations were performed to explore the core interactions between PqsR inhibitors and their receptor. The results indicate that an effective PqsR inhibitor should possess two aromatic rings, one hydrogen bond acceptor, and two hydrophobic groups and should form strong interactions with the following four amino acid residues: TYR_258, ILE_236, LEU_208, and GLN_194. Moreover, the docking score and the binding free energy should be lower than -8 kcal/mol and -40 kcal/mol, respectively. Finally, the validity of the multidimensional screening model was confirmed by a test set of PqsR inhibitors, which showed a higher accuracy than the existing screening methods based on single characteristics. This multidimensional screening model would be a useful tool for the discovery and optimization of PqsR inhibitors in the future.


Asunto(s)
Simulación de Dinámica Molecular , Farmacóforo , Simulación del Acoplamiento Molecular , Percepción de Quorum , Antibacterianos/química
3.
Phytomedicine ; 130: 155733, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38759314

RESUMEN

BACKGROUND: The proinflammatory response induced by macrophages plays a crucial role in the development of sepsis and the resulting multiorgan dysfunction. Identifying new regulatory targets for macrophage homeostasis and devising effective treatment strategies remains a significant challenge in contemporary research. PURPOSE: This study aims to identify new regulatory targets for macrophage homeostasis and develop effective strategies for treating sepsis. STUDY DESIGN AND METHODS: Macrophage infiltration in septic patients and in lungs, kidneys, and brains of caecum ligation and puncture (CLP)-induced septic mice was observed using CIBERSORT and immunofluorescence (IF). Upon integrating the MSigDB database and GSE65682 dataset, differently expressed macrophage-associated genes (DEMAGs) were identified. Critical DEMAGs were confirmed through machine learning. The protein level of the critical DEMAG was detected in PBMCs of septic patients, RAW264.7 cells, and mice lungs, kidneys, and brains using ELISA, western blot, immunohistochemistry, and IF. siRNA was applied to investigate the effect of the critical DEMAG in RAW264.7 cells. A natural product library was screened to find a compound targeting the critical DEMAG protein. The binding of compounds and proteins was analyzed through molecular docking, molecular dynamics simulations, CETSA, and MST analysis. The therapeutic efficacy of the compounds against sepsis was then evaluated through in vitro and in vivo experiments. RESULTS: Macrophage infiltration was inversely correlated with survival in septic patients. The critical differentially expressed molecule RasGRP1 was frequently observed in the PBMCs of septic patients, LPS-induced RAW264.7 cells, and the lungs, kidneys, and brains of septic mice. Silencing RasGRP1 alleviated proinflammatory response and oxidative stress in LPS-treated RAW264.7 cells. Catechin Hydrate (CH) was identified as an inhibitor of RasGRP1, capable of maintaining macrophage homeostasis and mitigating lung, kidney, and brain damage during sepsis. CONCLUSION: This study demonstrates that RasGRP1, a novel activator of macrophage proinflammatory responses, plays a crucial role in the excessive inflammation and oxidative stress associated with sepsis. CH shows potential for treating sepsis by inhibiting RasGRP1.


Asunto(s)
Catequina , Factores de Intercambio de Guanina Nucleótido , Macrófagos , Sepsis , Animales , Sepsis/tratamiento farmacológico , Ratones , Humanos , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Factores de Intercambio de Guanina Nucleótido/metabolismo , Catequina/farmacología , Insuficiencia Multiorgánica/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Pulmón/efectos de los fármacos
4.
J Med Chem ; 66(21): 14735-14754, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37874867

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) is well-known to cause biofilm-associated drug resistance and infections that often lead to treatment failure. Herein, we reported a dual-acting antibiofilm strategy by inhibiting both the bacterial quorum sensing system and the iron uptake system. A series of coumarin derivatives were synthesized and evaluated, and compound 4t was identified as the most effective biofilm inhibitor (IC50 = 3.6 µM). Further mechanistic studies have confirmed that 4t not only inhibits the QS systems but also competes strongly with pyoverdine as an iron chelator, causing an iron deficiency in P. aeruginosa. Additionally, 4t significantly improved the synergistic antibacterial effects of ciprofloxacin and tobramycin by more than 200-1000-fold compared to the single-dose antibiotic treatments. Therefore, our study has shown that 4t is a potentially novel antibacterial synergist candidate to treat bacterial infections.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Cumarinas/farmacología , Antibacterianos/farmacología , Biopelículas , Hierro/farmacología , Homeostasis , Factores de Virulencia , Proteínas Bacterianas
5.
J Hazard Mater ; 449: 130994, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36821898

RESUMEN

Microplastics (MPs) usually coexist with heavy metals (HMs) in soil. MPs can influence HMs mobility and bioavailability, but the underlying mechanisms remain largely unexplored. Here, polyethylene and polypropylene MPs were selected to investigate their effects and mechanisms of sorption-desorption, bioaccessibility and bioavailability of cadmium (Cd) in paddy soil. Batch experiments indicated that MPs significantly reduced the Cd sorption in soil (p < 0.05). Accordingly, soil with the MPs had lower boundary diffusion constant of Cd (C1= 0.847∼1.020) and the Freundlich sorption constant (KF = 0.444-0.616) than that without the MPs (C1 = 0.894∼1.035, KF = 0.500-0.655). X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses suggested that the MPs reduced Cd chemisorption, by covering the soil active sites and thus blocking complexation of Cd with active oxygen sites and interrupting the formation of CdCO3 and Cd3P2 precipitates. Such effects of MPs enhanced about 1.2-1.5 times of Cd bioaccessibility and bioavailability in soil. Almost the same effects but different mechanisms of polyethylene and polypropylene MPs on Cd sorption in the soil indicated the complexity and pervasiveness of their effects. The findings provide new insights into impacts of MPs on the fate and risk of HMs in agricultural soil.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Microplásticos/química , Cadmio/química , Plásticos/química , Suelo , Polietileno/química , Polipropilenos , Disponibilidad Biológica , Adsorción , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA