Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 194(2): 787-804, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815230

RESUMEN

Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.


Asunto(s)
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Estrés Fisiológico/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Physiol ; 195(1): 652-670, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38412470

RESUMEN

Poplar (Populus) is a well-established model system for tree genomics and molecular breeding, and hybrid poplar is widely used in forest plantations. However, distinguishing its diploid homologous chromosomes is difficult, complicating advanced functional studies on specific alleles. In this study, we applied a trio-binning design and PacBio high-fidelity long-read sequencing to obtain haplotype-phased telomere-to-telomere genome assemblies for the 2 parents of the well-studied F1 hybrid "84K" (Populus alba × Populus tremula var. glandulosa). Almost all chromosomes, including the telomeres and centromeres, were completely assembled for each haplotype subgenome apart from 2 small gaps on one chromosome. By incorporating information from these haplotype assemblies and extensive RNA-seq data, we analyzed gene expression patterns between the 2 subgenomes and alleles. Transcription bias at the subgenome level was not uncovered, but extensive-expression differences were detected between alleles. We developed machine-learning (ML) models to predict allele-specific expression (ASE) with high accuracy and identified underlying genome features most highly influencing ASE. One of our models with 15 predictor variables achieved 77% accuracy on the training set and 74% accuracy on the testing set. ML models identified gene body CHG methylation, sequence divergence, and transposon occupancy both upstream and downstream of alleles as important factors for ASE. Our haplotype-phased genome assemblies and ML strategy highlight an avenue for functional studies in Populus and provide additional tools for studying ASE and heterosis in hybrids.


Asunto(s)
Alelos , Genoma de Planta , Populus , Populus/genética , Genoma de Planta/genética , Regulación de la Expresión Génica de las Plantas , Haplotipos/genética , Hibridación Genética , Aprendizaje Automático
3.
Brain ; 147(1): 311-324, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37713627

RESUMEN

Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.


Asunto(s)
Distonía , Epilepsia , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Animales , Humanos , Microcefalia/genética , Discapacidad Intelectual/genética , Proteínas de Transporte Vesicular/genética , Trastornos del Neurodesarrollo/genética , Epilepsia/genética
4.
Cell Mol Life Sci ; 81(1): 262, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878186

RESUMEN

Through Smad3-dependent signalings, transforming growth factor-ß (TGF-ß) suppresses the development, maturation, cytokine productions and cytolytic functions of NK cells in cancer. Silencing Smad3 remarkably restores the cytotoxicity of NK-92 against cancer in TGF-ß-rich microenvironment, but its effects on the immunoregulatory functions of NK cells remain obscure. In this study, we identified Smad3 functioned as a transcriptional repressor for CSF2 (GM-CSF) in NK cells. Therefore, disrupting Smad3 largely mitigated TGF-ß-mediated suppression on GM-CSF production by NK cells. Furthermore, silencing GM-CSF in Smad3 knockout NK cells substantially impaired their anti-lung carcinoma effects. In-depth study demonstrated that NK-derived GM-CSF strengthened T cell immune responses by stimulating dendritic cell differentiation and M1 macrophage polarization. Meanwhile, NK-derived GM-CSF promoted the survival of neutrophils, which in turn facilitated the terminal maturation of NK cells, and subsequently boosted NK-cell mediated cytotoxicity against lung carcinoma. Thus, Smad3-silenced NK-92 (NK-92-S3KD) may serve as a promising immunoadjuvant therapy with clinical translational value given its robust cytotoxicity against malignant cells and immunostimulatory functions to reinforce the therapeutic effects of other immunotherapies.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Células Asesinas Naturales , Neoplasias Pulmonares , Proteína smad3 , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular , Macrófagos/metabolismo , Macrófagos/inmunología , Transducción de Señal
5.
J Am Soc Nephrol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687867

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is common in hospitalized patients and is associated with high mortality. Inflammation plays a key role in the pathophysiology of AKI. Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of the inflammatory and immune response, but its role in AKI remains unclear. METHODS: We explored the role of lncRNA Neat1 in (1) a cross-sectional and a longitudinal cohort of AKI in human; (2) three murine models of septic and aseptic AKI and (3) cultured C1.1 mouse kidney tubular cells. RESULTS: In human, hospitalized patients with AKI (n=66) demonstrated significantly increased lncRNA Neat1 levels in urinary sediment cells and buffy coat versus control participants (n=152) from a primary care clinic; and among 6 kidney transplant recipients, Neat1 levels were highest immediately after transplant surgery followed by a prompt decline to normal levels in parallel with recovery of kidney function. In mice with AKI induced by sepsis (via LPS injection or cecal ligation and puncture) and renal ischemia-reperfusion, kidney tubular Neat1 was increased versus sham-operated mice. Knockdown of Neat1 in the kidney using short hairpin RNA preserved kidney function, suppressed overexpression of the AKI biomarker NGAL, leukocyte infiltration and both intrarenal and systemic inflammatory cytokines IL-6, CCL-2 and IL-1ß. In LPS-treated C1.1 cells, Neat1 was overexpressed via TLR4/NF-κB signaling, and translocated from the cell nucleus into the cytoplasm where it promoted activation of NLRP3 inflammasomes via binding with the scaffold protein Rack1. Silencing Neat1 ameliorated LPS-induced cell inflammation, whereas its overexpression upregulated IL-6 and CCL-2 expression even without LPS stimulation. CONCLUSIONS: Our findings demonstrate a pathogenic role of Neat1 induction in human and mice during AKI with alleviation of kidney injury in 3 experimental models of septic and aseptic AKI after knockdown of Neat1. LPS/TLR4-induced Neat1 overexpression in tubular epithelial cells increases the inflammatory response by binding with the scaffold protein, Rack1, to activate NLRP3 inflammasomes.

6.
J Biol Chem ; 299(2): 102861, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603766

RESUMEN

Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.


Asunto(s)
Antifúngicos , Diseño de Fármacos , Proteínas de Transferencia de Fosfolípidos , Proteínas de Saccharomyces cerevisiae , Transporte Biológico/efectos de los fármacos , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Transducción de Señal , Antifúngicos/química , Antifúngicos/farmacología
7.
New Phytol ; 242(5): 2353-2368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38515228

RESUMEN

Evolutionary radiation, a pivotal aspect of macroevolution, offers valuable insights into evolutionary processes. The genus Pinus is the largest genus in conifers with c . 90% of the extant species emerged in the Miocene, which signifies a case of rapid diversification. Despite this remarkable history, our understanding of the mechanisms driving radiation within this expansive genus has remained limited. Using exome capture sequencing and a fossil-calibrated phylogeny, we investigated the divergence history, niche diversification, and introgression among 13 closely related Eurasian species spanning climate zones from the tropics to the boreal Arctic. We detected complex introgression among lineages in subsection Pinus at all stages of the phylogeny. Despite this widespread gene exchange, each species maintained its genetic identity and showed clear niche differentiation. Demographic analysis unveiled distinct population histories among these species, which further influenced the nucleotide diversity and efficacy of purifying and positive selection in each species. Our findings suggest that radiation in the Eurasian pines was likely fueled by interspecific recombination and further reinforced by their adaptation to distinct environments. Our study highlights the constraints and opportunities for evolutionary change, and the expectations of future adaptation in response to environmental changes in different lineages.


Asunto(s)
Flujo Génico , Filogenia , Pinus , Pinus/genética , Pinus/efectos de la radiación , Evolución Biológica , Variación Genética , Especificidad de la Especie , Europa (Continente) , Especiación Genética
8.
New Phytol ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308133

RESUMEN

Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.

9.
Plant Physiol ; 191(1): 496-514, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377782

RESUMEN

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.


Asunto(s)
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Environ Sci Technol ; 58(10): 4476-4486, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38382547

RESUMEN

Antibiotic resistance genes (ARGs) are ancient but have become a modern critical threat to health. Gut microbiota, a dynamic reservoir for ARGs, transfer resistance between individuals. Surveillance of the antibiotic resistome in the gut during different host growth phases is critical to understanding the dynamics of the resistome in this ecosystem. Herein, we disentangled the ARG profiles and the dynamic mechanism of ARGs in the egg and adult phases of Tetramorium caespitum. Experimental results showed a remarkable difference in both gut microbiota and gut resistome with the development of T. caespitum. Meta-based metagenomic results of gut microbiota indicated the generalizability of gut antibiotic resistome dynamics during host development. By using Raman spectroscopy and metabolomics, the metabolic phenotype and metabolites indicated that the biotic phase significantly changed lipid metabolism as T. caespitum aged. Lipid metabolites were demonstrated as the main factor driving the enrichment of ARGs in T. caespitum. Cuminaldehyde, the antibacterial lipid metabolite that displayed a remarkable increase in the adult phase, was demonstrated to strongly induce ARG abundance. Our findings show that the gut resistome is host developmental stage-dependent and likely modulated by metabolites, offering novel insights into possible steps to reduce ARG dissemination in the soil food chain.


Asunto(s)
Antibacterianos , Hormigas , Genes Bacterianos , Humanos , Adulto , Anciano , Antibacterianos/farmacología , Ecosistema , Lípidos
11.
Mol Ther ; 31(2): 344-361, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36514292

RESUMEN

Increasing evidence shows that SARS-CoV-2 can infect kidneys and cause acute kidney injury (AKI) in critically ill COVID-19 patients. However, mechanisms through which COVID-19 induces AKI are largely unknown, and treatment remains ineffective. Here, we report that kidney-specific overexpressing SARS-CoV-2 N gene can cause AKI, including tubular necrosis and elevated levels of serum creatinine and BUN in 8-week-old diabetic db/db mice, which become worse in those with older age (16 weeks) and underlying diabetic kidney disease (DKD). Treatment with quercetin, a purified product from traditional Chinese medicine (TCM) that shows effective treatment of COVID-19 patients, can significantly inhibit SARS-CoV-2 N protein-induced AKI in diabetic mice with or without underlying DKD. Mechanistically, quercetin can block the binding of SARS-CoV-2 N protein to Smad3, thereby inhibiting Smad3 signaling and Smad3-mediated cell death via the p16-dependent G1 cell-cycle arrest mechanism in vivo and in vitro. In conclusion, SARS-CoV-2 N protein is pathogenic and can cause severe AKI in diabetic mice, particularly in those with older age and pre-existing DKD, via the Smad3-dependent G1 cell-cycle arrest mechanism. Importantly, we identify that quercetin may be an effective TCM compound capable of inhibiting COVID-19 AKI by blocking SARS-CoV-2 N-Smad3-mediated cell death pathway.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Diabetes Mellitus Experimental , Ratones , Animales , SARS-CoV-2 , COVID-19/complicaciones , Quercetina/farmacología , Diabetes Mellitus Experimental/complicaciones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Ratones Endogámicos , Puntos de Control del Ciclo Celular
12.
Clin Exp Pharmacol Physiol ; 51(6): e13859, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643975

RESUMEN

Previous study has demonstrated that the Dietary Inflammation Index (DII) played a role in the risk of inflammatory bowel disease (IBD), however, the prevalence and risk factors for IBD are distinct across locations and groups, and therefore, the findings are debatable and warrant further investigation. A total of 4363 participants were calculated in the National Health and Nutrition Examination Survey (NHANES) 2009 to 2010, of whom 1.21% self-reported a history of IBD. DII values were performed as a good predictor of dietary inflammation based on data from two 24-h dietary reviews in the NHANES database. Comparing the multifarious effects along with variations of the whole population by grouping populations according to DII quartiles, dietary inflammation levels increased progressively from DII quartile 1(Q1) to quartile 4(Q4). The association between DII and IBD was tested with multi-variable logistic regression models, subgroup analyses and weighted generalized additive models. Participants in the Q4 group showed the highest levels of C-reactive protein and reduced haemoglobin and albumin levels. Logistic regression confirmed the odds ratios (95% confidence intervals) of IBD for DII were 0.99 (0.86, 1.15), 0.97 (0.84, 1.13) and 0.80 (0.66, 0.98) in models 1, 2 and 3, respectively. The negative correlation between DII and IBD among United States adults from the NHANES database became increasingly apparent as covariates were adjusted. Subgroup analyses and smoothed curve fitting confirmed the inverse results. The study revealed that DII was correlated with the overall physical well-being of participants. However, there was no significant association between DII and IBD.


Asunto(s)
Dieta , Inflamación , Enfermedades Inflamatorias del Intestino , Encuestas Nutricionales , Humanos , Enfermedades Inflamatorias del Intestino/epidemiología , Masculino , Femenino , Adulto , Inflamación/epidemiología , Inflamación/sangre , Dieta/efectos adversos , Persona de Mediana Edad , Factores de Riesgo , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Estados Unidos/epidemiología
13.
Arch Toxicol ; 98(5): 1297-1310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38498160

RESUMEN

Lung injury has been a serious medical problem that requires new therapeutic approaches and biomarkers. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) that exist widely in eukaryotes. CircRNAs are single-stranded RNAs that form covalently closed loops. CircRNAs are significant gene regulators that have a role in the development, progression, and therapy of lung injury by controlling transcription, translating into protein, and sponging microRNAs (miRNAs) and proteins. Although the study of circRNAs in lung injury caused by pulmonary toxicants is just beginning, several studies have revealed their expression patterns. The function that circRNAs perform in relation to pulmonary toxicants (severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2), drug abuse, PM2.5, and cigarette smoke) is the main topic of this review. A variety of circRNAs can serve as potential biomarkers of lung injury. In this review, the biogenesis, properties, and biological functions of circRNAs were concluded, and the relationship between circRNAs and pulmonary toxicants was discussed. It is expected that the new ideas and potential treatment targets that circRNAs provide would be beneficial to research into the molecular mechanisms behind lung injury.


Asunto(s)
Lesión Pulmonar , MicroARNs , Humanos , ARN Circular/genética , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/terapia , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores/metabolismo
14.
J Biol Chem ; 298(12): 102604, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36257406

RESUMEN

During mammary development, the transdifferentiation of mammary preadipocytes is one of the important sources for lactating mammary epithelial cells (MECs). However, there is limited knowledge about the mechanisms of dynamic regulation of transcriptome and genome-wide DNA methylation in the preadipocyte transdifferentiation process. Here, to gain more insight into these mechanisms, preadipocytes were isolated from adipose tissues from around the goat mammary gland (GM-preadipocytes). The GM-preadipocytes were cultured on Matrigel in conditioned media made from goat MECs to induce GM-preadipocyte-to-MEC transdifferentiation. The transdifferentiated GM-preadipocytes showed high abundance of keratin 18, which is a marker protein of MECs, and formed mammary acinar-like structures after 8 days of induction. Then, we performed transcriptome and DNA methylome profiling of the GM-preadipocytes and transdifferentiated GM-preadipocytes, respectively, and the differentially expressed genes and differentially methylated genes that play underlying roles in the process of transdifferentiation were obtained. Subsequently, we identified the candidate transcription factors in regulating the GM-preadipocyte-to-MEC transdifferentiation by transcription factor-binding motif enrichment analysis of differentially expressed genes and differentially methylated genes. Meanwhile, the secretory proteome of GM-preadipocytes cultured in conditioned media was also detected. By integrating the transcriptome, DNA methylome, and proteome, three candidate genes, four proteins, and several epigenetic regulatory axes were further identified, which are involved in regulation of the cell cycle, cell polarity establishment, cell adhesion, cell reprogramming, and adipocyte plasticity. These findings provide novel insights into the molecular mechanism of preadipocyte transdifferentiation and mammary development.


Asunto(s)
Metilación de ADN , Lactancia , Animales , Femenino , Medios de Cultivo Condicionados , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Cabras , Lactancia/genética , Glándulas Mamarias Animales , Proteoma/metabolismo , Transcriptoma , Adipocitos/metabolismo
15.
Am J Med Genet C Semin Med Genet ; 193(2): 183-187, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37212526

RESUMEN

GNB1-related disorder is characterized by intellectual disability, abnormal tone, and other variable neurologic and systemic features. GNB1 encodes the ß1 subunit of the heterotrimeric G-protein, a complex with a key role in signal transduction. Consistent with its particularly high expression in rod photoreceptors, Gß1 forms a subunit of retinal transducin (Gαtß1γ1 ), which mediates phototransduction. In mice, GNB1 haploinsufficiency has been associated with retinal dystrophy. In humans, however, although vision and eye movement abnormalities are common in individuals with GNB1-related disorder, rod-cone dystrophy is not yet an established feature of this condition. We expand the phenotype of GNB1-related disorder with the first confirmed report of rod-cone dystrophy in an affected individual, and contribute to a further understanding of the natural history of this condition in a mildly affected 45-year-old adult.


Asunto(s)
Distrofias de Conos y Bastones , Subunidades beta de la Proteína de Unión al GTP , Retinitis Pigmentosa , Humanos , Adulto , Ratones , Animales , Persona de Mediana Edad , Distrofias de Conos y Bastones/genética , Retinitis Pigmentosa/genética , Retina , Células Fotorreceptoras Retinianas Bastones , Fenotipo , Subunidades beta de la Proteína de Unión al GTP/genética
16.
Hum Mol Genet ; 30(10): 908-922, 2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-33822942

RESUMEN

Mucolipidosis IV (MLIV) is an orphan disease leading to debilitating psychomotor deficits and vision loss. It is caused by loss-of-function mutations in the MCOLN1 gene that encodes the lysosomal transient receptor potential channel mucolipin1, or TRPML1. With no existing therapy, the unmet need in this disease is very high. Here, we showed that AAV-mediated CNS-targeted gene transfer of the human MCOLN1 gene rescued motor function and alleviated brain pathology in the MLIV mouse model. Using the AAV-PHP.b vector in symptomatic mice, we showed long-term reversal of declined motor function and significant delay of paralysis. Next, using self-complementary AAV9 clinical candidate vector, we showed that its intracerebroventricular administration in post-natal day 1 mice significantly improved motor function, myelination and reduced lysosomal storage load in the MLIV mouse brain. Based on our data and general advancements in the gene therapy field, we propose scAAV9-mediated CSF-targeted MCOLN1 gene transfer as a therapeutic strategy in MLIV.


Asunto(s)
Terapia Genética , Mucolipidosis/terapia , Enfermedades del Sistema Nervioso/terapia , Canales de Potencial de Receptor Transitorio/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Mutación con Pérdida de Función/genética , Lisosomas/genética , Lisosomas/patología , Ratones , Mucolipidosis/líquido cefalorraquídeo , Mucolipidosis/genética , Mucolipidosis/patología , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología
17.
Environ Microbiol ; 25(2): 505-514, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478095

RESUMEN

Soil bacteria are diverse and form complicated ecological networks through various microbial interactions, which play important roles in soil multi-functionality. However, the seasonal effects on the bacterial network, especially the relationship between bacterial network topological features and soil resistomes remains underexplored, which impedes our ability to unveil the mechanisms of the temporal-dynamics of antibiotic resistance genes (ARGs). Here, a field investigation was conducted across four seasons at the watershed scale. We observed significant seasonal variation in bacterial networks, with lower complexity and stability in autumn, and a wider bacterial community niche in summer. Similar to bacterial communities, the co-occurrence networks among ARGs also shift with seasonal change, particularly with respect to the topological features of the node degree, which on average was higher in summer than in the other seasons. Furthermore, the nodes with higher betweenness, stress, degree, and closeness centrality in the bacterial network showed strong relationships with the 10 major classes of ARGs. These findings highlighted the changes in the topological properties of bacterial networks that could further alter antibiotic resistance in soil. Together, our results reveal the temporal dynamics of bacterial ecological networks at the watershed scale, and provide new insights into antibiotic resistance management under environmental changes.


Asunto(s)
Genes Bacterianos , Suelo , Microbiología del Suelo , Bacterias/genética , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología
18.
J Gene Med ; 25(1): e3456, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219542

RESUMEN

BACKGROUND: The c.194+2 T>C variant of serine protease inhibitor Kazal type 1 (SPINK1) is a known genetic risk factor found in Chinese patients with idiopathic chronic pancreatitis (ICP), but the early-onset mechanisms of ICP are still unclear. METHODS: Complementary experimental approaches were used to pursue other potential pathologies in the present study. The serum level of SPINK1 of ICP patients in the Han population in China was detected and verified by an enzyme-linked immunosorbent assay. Next, differentially expressed proteins and microRNAs from plasma samples of early-onset and late-onset ICP patients were screened by proteomic analysis and microarray, respectively. RESULTS: Combined with these advanced methods, the data strongly suggest that the regulatory effects of microRNAs were involved in the early-onset mechanism of the ICP by in vitro experiments. There was no significant difference in the plasma SPINK1 expression between the early-onset ICP and the late-onset patients. However, the expression of plasma glutathione peroxidase (GPx3) in early-onset ICP patients was markedly lower than that in late-onset ICP patients, although the level of hsa-miR-323b-5p was lower in late-onset patients compared to the early-onset ICP group. In vitro experiments confirmed that hsa-miR-323b-5p could increase apoptosis in caerulein-treated pancreatic acinar cells and inhibit the expression of GPx3. CONCLUSIONS: The up-regulated hsa-miR-323b-5p might play a crucial role in the early-onset mechanisms of ICP by diminishing the antioxidant activity through the down-regulation of GPx3.


Asunto(s)
MicroARNs , Pancreatitis Crónica , Humanos , MicroARNs/metabolismo , Pancreatitis Crónica/genética , Proteómica , Factores de Riesgo , Inhibidor de Tripsina Pancreática de Kazal/genética
19.
Mol Ecol ; 32(11): 2732-2749, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843569

RESUMEN

Polyploids recurrently emerge in angiosperms, but most polyploids are likely to go extinct before establishment due to minority cytotype exclusion, which may be specifically a constraint for dioecious plants. Here we test the hypothesis that a stable sex-determination system and spatial/ecological isolation facilitate the establishment of dioecious polyploids. We determined the ploidy levels of 351 individuals from 28 populations of the dioecious species Salix polyclona, and resequenced 190 individuals of S. polyclona and related taxa for genomic diversity analyses. The ploidy survey revealed a frequency 52% of tetraploids in S. polyclona, and genomic k-mer spectra analyses suggested an autopolyploid origin for them. Comparisons of diploid male and female genomes identified a female heterogametic sex-determining factor on chromosome 15, which probably also acts in the dioecious tetraploids. Phylogenetic analyses revealed two diploid clades and a separate clade/grade of tetraploids with a distinct geographic distribution confined to western and central China, where complex mountain systems create higher levels of environmental heterogeneity. Fossil-calibrated phylogenies showed that the polyploids emerged during 7.6-2.3 million years ago, and population demographic histories largely matched the geological and climatic history of the region. Our results suggest that inheritance of the sex-determining system from the diploid progenitor as intrinsic factor and spatial isolation as extrinsic factor may have facilitated the preservation and establishment of polyploid dioecious populations.


Asunto(s)
Diploidia , Tetraploidía , Humanos , Filogenia , Evolución Biológica , Poliploidía
20.
Mol Ther ; 30(9): 3017-3033, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35791881

RESUMEN

Clopidogrel, a P2Y12 inhibitor, is a novel anti-fibrosis agent for chronic kidney disease (CKD), but its mechanisms remain unclear, which we investigated by silencing P2Y12 or treating unilateral ureteral obstruction (UUO) in LysM-Cre/Rosa Tomato mice with clopidogrel in vivo and in vitro. We found that P2Y12 was significantly increased and correlated with progressive renal fibrosis in CKD patients and UUO mice. Phenotypically, up to 82% of P2Y12-expressing cells within the fibrosing kidney were of macrophage origin, identified by co-expressing CD68/F4/80 antigens or a macrophage-lineage-tracing marker Tomato. Unexpectedly, more than 90% of P2Y12-expressing macrophages were undergoing macrophage-to-myofibroblast transition (MMT) by co-expressing alpha smooth muscle actin (α-SMA), which was also confirmed by single-cell RNA sequencing. Functionally, clopidogrel improved the decline rate of the estimated glomerular filtration rate (eGFR) in patients with CKD and significantly inhibited renal fibrosis in UUO mice. Mechanistically, P2Y12 expression was induced by transforming growth factor ß1 (TGF-ß1) and promoted MMT via the Smad3-dependent mechanism. Thus, silencing or pharmacological inhibition of P2Y12 was capable of inhibiting TGF-ß/Smad3-mediated MMT and progressive renal fibrosis in vivo and in vitro. In conclusion, P2Y12 is highly expressed by macrophages in fibrosing kidneys and mediates renal fibrosis by promoting MMT via TGF-ß/Smad3 signaling. Thus, P2Y12 inhibitor maybe a novel and effective anti-fibrosis agent for CKD.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Clopidogrel/metabolismo , Clopidogrel/farmacología , Clopidogrel/uso terapéutico , Fibrosis , Riñón , Enfermedades Renales/etiología , Enfermedades Renales/genética , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA