Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(21): 216702, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295086

RESUMEN

Ferromagnets are known to support spin-polarized currents that control various spin-dependent transport phenomena useful for spintronics. On the contrary, fully compensated antiferromagnets are expected to support only globally spin-neutral currents. Here, we demonstrate that these globally spin-neutral currents can represent the Néel spin currents, i.e., staggered spin currents flowing through different magnetic sublattices. The Néel spin currents emerge in antiferromagnets with strong intrasublattice coupling (hopping) and drive the spin-dependent transport phenomena such as tunneling magnetoresistance (TMR) and spin-transfer torque (STT) in antiferromagnetic tunnel junctions (AFMTJs). Using RuO_{2} and Fe_{4}GeTe_{2} as representative antiferromagnets, we predict that the Néel spin currents with a strong staggered spin polarization produce a sizable fieldlike STT capable of the deterministic switching of the Néel vector in the associated AFMTJs. Our work uncovers the previously unexplored potential of fully compensated antiferromagnets and paves a new route to realize the efficient writing and reading of information for antiferromagnetic spintronics.

2.
Nat Commun ; 14(1): 5873, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735469

RESUMEN

Cubic materials host high crystal symmetry and hence are not expected to support anisotropy in transport phenomena. In contrast to this common expectation, here we report an anomalous anisotropy of spin current can emerge in the (001) film of Mn3Pt, a noncollinear antiferromagnetic spin source with face-centered cubic structure. Such spin current anisotropy originates from the intertwined time reversal-odd ([Formula: see text]-odd) and time reversal-even ([Formula: see text]-even) spin Hall effects. Based on symmetry analyses and experimental characterizations of the current-induced spin torques in Mn3Pt-based heterostructures, we find that the spin current generated by Mn3Pt (001) exhibits exotic dependences on the current direction for all the spin components, deviating from that in conventional cubic systems. We also demonstrate that such an anisotropic spin current can be used to realize low-power spintronic applications such as the efficient field-free switching of the perpendicular magnetizations.

3.
Natl Sci Rev ; 9(12): nwac020, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36694799

RESUMEN

The second-order nonlinear Hall effect observed in the time-reversal symmetric system has not only shown abundant physical content, but also exhibited potential application prospects. Recently, a third-order nonlinear Hall effect has been observed in MoTe2 and WTe2. However, few-layer MoTe2 and WTe2 are usually unstable in air and the observed third-order nonlinear Hall effect can be measured only at low temperature, which hinders further investigation as well as potential application. Thus, exploring new air-stable material systems with a sizable third-order nonlinear Hall effect at room temperature is an urgent task. Here, in type-II Weyl semimetal TaIrTe4, we observed a pronounced third-order nonlinear Hall effect, which can exist at room temperature and remain stable for months. The third-order nonlinear Hall effect is connected to the Berry-connection polarizability tensor instead of the Berry curvature. The possible mechanism of the observation of the third-order nonlinear Hall effect in TaIrTe4 at room temperature has been discussed. Our findings will open an avenue towards exploring room-temperature nonlinear devices in new quantum materials.

4.
Sci Bull (Beijing) ; 65(7): 531-537, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659184

RESUMEN

Based on the tight-binding calculations on honeycomb lattice and photonic experimental visualization on artificial graphene (AG), we report the domain-wall-induced gapped topological kink states and topological corner states. In honeycomb lattice, domain walls (DWs) with gapless topological kink states could be induced either by sublattice symmetry breaking or by lattice deformation. We find that the coexistence of these two mechanisms will induce DWs with gapped topological kink states. Significantly, the intersection of these two types of DWs gives rise to topological corner state localized at the crossing point. Through the manipulation of the DWs, we show AG with honeycomb lattice structure not only a versatile platform supporting multiple topological corner modes in a controlled manner, but also possessing promising applications such as fabricating topological quantum dots composed of gapped topological kink states and topological corner states.

5.
J Phys Condens Matter ; 30(47): 475702, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30378570

RESUMEN

Two-dimensional (2D) semiconductors SnP3 are predicted, from first-principles calculations, to host moderate band gaps (0.72 eV for monolayer and 1.07 eV for bilayer), ultrahigh carrier mobility (∼104 cm2 V-1 s-1 for bilayer), strong absorption coefficients (∼105 cm-1) and good stability. Moreover, the band gap can be modulated from an indirect character into a direct one via strain engineering. For experimental accessibility, the calculated exfoliation energies of monolayer and bilayer SnP3 are smaller than those of the common arsenic-type honeycomb structures GeP3 and InP3. More importantly, a semiconductor-to-metal transition is discovered with the layer number N > 2. We demonstrate, in remarkable contrast to the previous understandings, that such phase transition is largely driven by the correlation between lone-pair electrons of interlayer Sn and P atoms. This mechanism is universal for analogues phase transitions in arsenic-type honeycomb structures (GeP3, InP3 and SnP3).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA