Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell Proteomics ; 21(1): 100175, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763062

RESUMEN

Protein ubiquitylation is an important posttranslational modification that governs most cellular processes. Signaling functions of ubiquitylation are very diverse and involve proteolytic as well as nonproteolytic events, such as localization, regulation of protein interactions, and control of protein activity. The intricacy of ubiquitin signaling is further complicated by several different polyubiquitin chain types that are likely recognized and interpreted by different protein readers. For example, K48-linked ubiquitin chains represent the most abundant chain topology and are the canonical degradation signals, but have been implicated in degradation-independent functions as well, likely requiring a variety of protein readers. Ubiquitin binding domains that interact with polyubiquitin chains are likely at the center of ubiquitin signal recognition and transmission, but their structure and selectivity are largely unexplored. Here we report identification and characterization of the ubiquitin interacting motif-like (UIML) domain of the yeast transcription factor Met4 as a strictly K48-polyubiquitin specific binding unit using methods such as biolayer interferometry (BLI), pull-down assays, and mass spectrometry. We further used the selective binding property to develop an affinity probe for purification of proteins modified with K48-linked polyubiquitin chains. The affinity probe has a Kd = 100 nM for K48 tetra-ubiquitin and shows no detectable interaction with either monoubiquitin or any other polyubiquitin chain configuration. Our results define a short strictly K48-linkage-dependent binding motif and present a new affinity reagent for the K48-polyubiquitin-modified proteome. Our findings benefit the ubiquitin field in analyses of the role of K48-linked polyubiquitylation and increase our understanding of chain topology selective ubiquitin chain recognition.


Asunto(s)
Poliubiquitina , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Poliubiquitina/química , Poliubiquitina/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
2.
J Proteome Res ; 22(10): 3360-3367, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37676756

RESUMEN

Activity-based proteome profiling (ABPP) is a powerful chemoproteomic technology for global profiling of protein activity and modifications. The tandem orthogonal proteolysis-ABPP (TOP-ABPP) strategy utilizes a clickable enrichment tag with cleavable linkers to enable direct identification of probe-labeled residue sites within the target proteins. However, such a site-specific chemoproteomic workflow requires a long operation time and complex sample preparation procedures, limiting its wide applications. In the current study, we developed a simplified and ultrafast peptide enrichment and release TOP-ABPP ("superTOP-ABPP") pipeline for site-specific quantitative chemoproteomic analysis with special agarose resins that are functionalized with azide groups and acid-cleavable linkers. The azide groups allow enrichment of peptides that are labeled by the alkynyl probe through a one-step click reaction, which can be conveniently released by acid cleavage for subsequent LC-MS/MS analysis. In comparison with the traditional TOP-ABPP method, superTOP-ABPP cuts down the averaged sample preparation time from 25 to 9 h, and significantly improves the sensitivity and coverage of site-specific cysteinome profiling. The method can also be seamlessly integrated with reductive dimethylation to enable quantitative chemoproteomic analysis with a high accuracy. The simplified and ultrafast superTOP-ABPP will become a valuable tool for site-specific quantitative chemoproteomic studies.

3.
J Proteome Res ; 22(4): 1245-1254, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36877145

RESUMEN

Trypsin specifically cleaves the C-terminus of lysine and arginine residues but often fails to cleave modified lysines, such as ubiquitination, therefore resulting in the uncleaved K-ε-GG peptides. Therefore, the cleaved ubiquitinated peptide identification was often regarded as false positives and discarded. Interestingly, unexpected cleavage at the K48-linked ubiquitin chain has been reported, suggesting the latent ability of trypsin to cleave ubiquitinated lysine residues. However, it remains unclear whether other trypsin-cleavable ubiquitinated sites are present. In this study, we verified the ability of trypsin in cleaving K6 and K63 besides K48 chains. The uncleaved K-ε-GG peptide was quickly and efficiently generated during trypsin digestion, whereas cleaved ones were produced with much lower efficiency. Then, the K-ε-GG antibody was proved to efficiently enrich the cleaved K-ε-GG peptides and several published large-scale ubiquitylation datasets were re-analyzed to interrogate the cleaved sequence features. In total, more than 2400 cleaved ubiquitinated peptides were identified in the K-ε-GG and UbiSite antibody-based datasets. The frequency of lysine upstream of the cleaved modified K was significantly enriched. The kinetic activity of trypsin in cleaving ubiquitinated peptides was further elucidated. We suggest that the cleaved K-ε-GG sites with high post-translational modification probability (≥0.75) should be considered as true positives in future ubiquitome analyses.


Asunto(s)
Lisina , Ubiquitina , Lisina/metabolismo , Tripsina/metabolismo , Secuencia de Aminoácidos , Ubiquitina/metabolismo , Ubiquitinación , Péptidos
4.
J Am Chem Soc ; 145(23): 12673-12681, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37271942

RESUMEN

Itaconate is an important antimicrobial and immunoregulatory metabolite involved in host-pathogen interactions. A key mechanistic action of itaconate is through the covalent modification of cysteine residues via Michael addition, resulting in "itaconation". However, it is unclear whether itaconate has other regulatory mechanisms. In this work, we discovered a novel type of post-translational modification by promiscuous antibody enrichment and data analysis with the open-search strategy and further confirmed it as the lysine "itaconylation". We showed that itaconylation and its precursor metabolite itaconyl-CoA undergo significant upregulation upon lipopolysaccharides (LPS) stimulation in RAW264.7 macrophages. Quantitative proteomics identified itaconylation sites in multiple functional proteins, including glycolytic enzymes and histones, some of which were confirmed by synthetic peptide standards. The discovery of lysine itaconylation opens up new areas for studying how itaconate participates in immunoregulation via protein post-translational modification.


Asunto(s)
Lisina , Succinatos , Lisina/metabolismo , Succinatos/química , Acilación , Histonas/metabolismo , Procesamiento Proteico-Postraduccional
5.
Proc Natl Acad Sci U S A ; 117(1): 328-336, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31843888

RESUMEN

The fundamental importance of the 26S proteasome in health and disease suggests that its function must be finely controlled, and yet our knowledge about proteasome regulation remains limited. Posttranslational modifications, especially phosphorylation, of proteasome subunits have been shown to impact proteasome function through different mechanisms, although the vast majority of proteasome phosphorylation events have not been studied. Here, we have characterized 1 of the most frequently detected proteasome phosphosites, namely Ser361 of Rpn1, a base subunit of the 19S regulatory particle. Using a variety of approaches including CRISPR/Cas9-mediated gene editing and quantitative mass spectrometry, we found that loss of Rpn1-S361 phosphorylation reduces proteasome activity, impairs cell proliferation, and causes oxidative stress as well as mitochondrial dysfunction. A screen of the human kinome identified several kinases including PIM1/2/3 that catalyze S361 phosphorylation, while its level is reversibly controlled by the proteasome-resident phosphatase, UBLCP1. Mechanistically, Rpn1-S361 phosphorylation is required for proper assembly of the 26S proteasome, and we have utilized a genetic code expansion system to directly demonstrate that S361-phosphorylated Rpn1 more readily forms a precursor complex with Rpt2, 1 of the first steps of 19S base assembly. These findings have revealed a prevalent and biologically important mechanism governing proteasome formation and function.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades de Proteína/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Pruebas de Enzimas , Técnicas de Sustitución del Gen , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Nucleares/genética , Estrés Oxidativo , Fosfoproteínas Fosfatasas/genética , Fosforilación/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/genética , ARN Interferente Pequeño/metabolismo , Serina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
6.
J Am Chem Soc ; 144(23): 10320-10329, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35648456

RESUMEN

Protein lipoylation is an evolutionarily conserved post-translational modification from prokaryotes to eukaryotes. Lipoylation is implicated with several human diseases, including metabolic disorders, cancer, and Alzheimer's disease. While individual lipoylated proteins have been biochemically studied, a strategy for globally quantifying lipoylation with site-specific resolution in proteomes is still lacking. Herein, we developed a butyraldehyde-alkynyl probe to specifically label and enrich lipoylations in complexed biological samples. Combined with a chemoproteomic pipeline using customized tandem enzyme digestions and a biotin enrichment tag with enhanced ionization, we successfully quantified all known lipoylation sites in both Escherichia coli (E. coli) and human proteomes. The strategy enabled us to dissect the dependence of three evolutionarily related lipoylation sites in dihydrolipoamide acetyltransferase (ODP2) in E. coli and evaluated the functional connection between the de novo lipoylation synthetic pathway and the salvage pathway. Our chemoproteomic platform provides a useful tool to monitor the state of lipoylation in proteome samples, which will help decipher molecular mechanisms of lipoylation-related diseases.


Asunto(s)
Escherichia coli , Lipoilación , Escherichia coli/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo
7.
Development ; 146(2)2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30635284

RESUMEN

Protein modification by ubiquitin and ubiquitin-like proteins (UBLs) regulates numerous biological functions. The UFM1 system, a novel UBL conjugation system, is implicated in mouse development and hematopoiesis. However, its broad biological functions and working mechanisms remain largely elusive. CDK5RAP3, a possible ufmylation substrate, is essential for epiboly and gastrulation in zebrafish. Herein, we report a crucial role of CDK5RAP3 in liver development and hepatic functions. Cdk5rap3 knockout mice displayed prenatal lethality with severe liver hypoplasia, as characterized by delayed proliferation and compromised differentiation. Hepatocyte-specific Cdk5rap3 knockout mice suffered post-weaning lethality, owing to serious hypoglycemia and impaired lipid metabolism. Depletion of CDK5RAP3 triggered endoplasmic reticulum stress and activated unfolded protein responses in hepatocytes. We detected the in vivo interaction of CDK5RAP3 with UFL1, the defined E3 ligase in ufmylation. Notably, loss of CDK5RAP3 altered the ufmylation profile in liver cells, suggesting that CDK5RAP3 serves as a novel substrate adaptor for this UBL modification. Collectively, our study identifies CDK5RAP3 as an important regulator of ufmylation and suggests the involvement of ufmylation in mammalian development.


Asunto(s)
Hígado/embriología , Hígado/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Proliferación Celular , Pérdida del Embrión/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Homeostasis , Humanos , Hígado/patología , Ratones Noqueados , Unión Proteica , Especificidad por Sustrato , Proteínas Supresoras de Tumor
8.
Analyst ; 147(15): 3434-3443, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35797714

RESUMEN

Polyubiquitination signal deliver diverse cellular signal, which have been recognized as a sophisticated ubiquitin code. The perception and transduction of ubiquitination signal depend on the specificity and sensitivity of the ubiquitin-binding domain. Accurate and sensitive detection of polyubiquitination signal is crucial for revealing the dynamic cellular ubiquitin-regulated events. Western blotting (WB) and immunohistochemistry (IHC) are the most widely used biochemical strategies to detect ubiquitination signal on substrates under diverse physiological and pathological conditions. However, anti-ubiquitin antibodies fail to reflect polyubiquitination signal unbiasedly because of their strong preference for K63-linked ubiquitin chains. Herein, we demonstrated that our previously developed tandem hybrid ubiquitin-binding domain (ThUBD) chemically labeled with a reporter group such as horseradish peroxidase (ThUBD-HRP) could significantly improve the robustness and sensitivity of polyubiquitination signal detection. This advanced method was named TUF-WB Plus (TUF-WB+). The TUF-WB+ method significantly increases the sensitivity and accuracy of ubiquitin detection and requires a shorter experimental operation time. Furthermore, it enables the ThUBD-HRP probe to function as a powerful tool for spatial in situ polyubiquitination detection in cells by immunohistochemistry. Our newly developed ThUBD-HRP probe and TUF-WB+ method provide a robust and powerful tool for ubiquitination signal detection with hypersensitivity in an unbiased manner.


Asunto(s)
Transducción de Señal , Ubiquitina , Unión Proteica , Ubiquitinación
9.
J Hepatol ; 75(1): 74-85, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33621634

RESUMEN

BACKGROUND & AIMS: HBV remains a global threat to human health. It remains incompletely understood how HBV self-restricts in the host during most adult infections. Thus, we performed multi-omics analyses to systematically interrogate HBV-host interactions and the life cycle of HBV. METHODS: RNA-sequencing and ribosome profiling were conducted with cell-based models for HBV replication and gene expression. The novel translational events or products hereby detected were then characterized, and functionally assessed in both cell and mouse models. Moreover, quasi-species analyses of HBV subpopulations were conducted with patients at immune tolerance or activation phases, using next- or third-generation sequencing. RESULTS: We identified EnhI-SL (Enhancer I-stem loop) as a new cis element in the HBV genome; mutations disrupting EnhI-SL were found to elevate viral polymerase expression. Furthermore, while re-discovering HpZ/P', a previously under-explored isoform of HBV polymerase, we also identified HBxZ, a novel short isoform of HBX. Having confirmed their existence, we functionally characterized them as potent suppressors of HBV gene expression and genome replication. Mechanistically, HpZ/P' was found to repress HBV gene expression partially by interacting with, and sequestering SUPV3L1. Activation of the host immune system seemed to reduce the abundance of HBV mutants deficient in HpZ/P' or with disruptions in EnhI-SL. Finally, SRSF2, a host RNA spliceosome protein that is downregulated by HBV, was found to promote the splicing of viral pre-genomic RNA and HpZ/P' biogenesis. CONCLUSION: This study has identified multiple self-restricting HBV-host interactions. In particular, SRSF2-HpZ/P' appeared to constitute another negative feedback mechanism in the HBV life cycle. Targeting host splicing machinery might thus represent a strategy to intervene in HBV-host interactions. LAY SUMMARY: There remain many unknowns about the natural history of HBV infection in adults. Herein, we identified new HBV-host mechanisms which could be responsible for self-restricting infections. Targeting these mechanisms could be a promising strategy for the treatment of HBV infections.


Asunto(s)
Productos del Gen pol/metabolismo , Virus de la Hepatitis B , Hepatitis B Crónica , Interacciones Microbiota-Huesped/inmunología , Replicación Viral , Animales , Descubrimiento de Drogas , Genoma Viral/fisiología , Virus de la Hepatitis B/enzimología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Humanos , Ratones , Regiones Promotoras Genéticas , Modificación Traduccional de las Proteínas , Autoempalme del ARN Ribosómico/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Replicación Viral/genética , Replicación Viral/inmunología
10.
Mol Cell Proteomics ; 18(4): 773-785, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30622160

RESUMEN

De novo peptide sequencing for large-scale proteomics remains challenging because of the lack of full coverage of ion series in tandem mass spectra. We developed a mirror protease of trypsin, acetylated LysargiNase (Ac-LysargiNase), with superior activity and stability. The mirror spectrum pairs derived from the Ac-LysargiNase and trypsin treated samples can generate full b and y ion series, which provide mutual complementarity of each other, and allow us to develop a novel algorithm, pNovoM, for de novo sequencing. Using pNovoM to sequence peptides of purified proteins, the accuracy of the sequence was close to 100%. More importantly, from a large-scale yeast proteome sample digested with trypsin and Ac-LysargiNase individually, 48% of all tandem mass spectra formed mirror spectrum pairs, 97% of which contained full coverage of ion series, resulting in precision de novo sequencing of full-length peptides by pNovoM. This enabled pNovoM to successfully sequence 21,249 peptides from 3,753 proteins and interpreted 44-152% more spectra than pNovo+ and PEAKS at a 5% FDR at the spectrum level. Moreover, the mirror protease strategy had an obvious advantage in sequencing long peptides. We believe that the combination of mirror protease strategy and pNovoM will be an effective approach for precision de novo sequencing on both single proteins and proteome samples.


Asunto(s)
Metaloproteasas/metabolismo , Péptidos/metabolismo , Proteómica/métodos , Análisis de Secuencia de Proteína/métodos , Tripsina/metabolismo , Acetilación , Secuencia de Aminoácidos , Anticuerpos Monoclonales/metabolismo , Estabilidad de Enzimas , Péptidos/química , Proteoma/metabolismo
11.
Anal Chem ; 92(1): 1074-1080, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31820937

RESUMEN

Polyubiquitination encompasses complex topologies through various linkage types to deliver diverse cellular signals, which has been recognized as a sophisticated ubiquitin code. Accurate comparison of polyubiquitination signals is critical for revealing the dynamic cellular ubiquitination-regulated events. Western blotting (WB) is the most widely used biochemical method to quantify proteins and posttranslational modifications under diverse physiological conditions. The accuracy and sensitivity of the WB mainly depend on the quality and specificity of the antibody. In this study, we found that the antiubiquitin antibodies exhibited different affinities to the eight linkage types of ubiquitin chains, with the highest sensitivity for the K63-linked chain, lower efficiency for M1 and K48, and very low affinity for the other types of chains. Herein, we introduced the tandem hybrid ubiquitin-binding domain (ThUBD)-based far-Western blotting (TUF-WB) to visualize the signal of synthetic ubiquitin chains or ubiquitinated conjugates on a solid membrane by utilizing the unbiased affinity of ThUBD to all types of ubiquitin linkages. As compared to antiubiquitin antibody detection, TUF-WB can accurately quantify the signal intensity to the mass amounts of all eight ubiquitin chains. Meanwhile, the sensitivity of this method in detecting complex ubiquitinated samples was 4-5-fold higher than those of antibodies. Consequently, TUF-WB allows accurate quantification of polyubiquitination signal on the membrane with great sensitivity and wider dynamic range.


Asunto(s)
Far-Western Blotting/métodos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinación , Proteínas Portadoras/análisis , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Escherichia coli/química , Células HEK293 , Humanos , Proteínas de la Membrana/química , Dominios Proteicos , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Anal Chem ; 91(24): 15890-15898, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31774262

RESUMEN

Mass spectrometry (MS)-based identification of ubiquitinated sites requires trypsin digestion prior to MS analysis, and a signature peptide was produced with a diglycine residue attached to the ubiquitinated lysine (K-ε-GG peptide). However, the missed cleavage of modified lysines by trypsin results in modified peptides with increased length and charge, whose detection by MS analysis is suppressed by the vast majority of internally unmodified peptides. LysargiNase, the mirrored trypsin, is reported to cleave before lysine and arginine residues and to be favorable for the identification of methylation and phosphorylation, but its digestive characteristics related to ubiquitination are unclear. Herein, we tested the capacity of the in-house developed acetylated LysargiNase (Ac-LysargiNase) with high activity and stability, for cleaving ubiquitinated sites in both the seven types of ubiquitin chains and their corresponding K-ε-GG peptides. Interestingly, Ac-LysargiNase could efficiently cleave the K63-linked chain but had little effect on the other types of chains. Additionally, Ac-LysargiNase had higher exopeptidase activity than trypsin. Utilizing these features of the paired mirror proteases, a workflow of trypsin and Ac-LysargiNase tandem digestion was developed for the identification of ubiquitinated proteins. Through this method, the charge states and ionization capacity of the unmodified peptides were efficiently reduced, and the identification of modified sites was consequently increased by 30% to 50%. Strikingly, approximately 15% of the modified sites were cleaved by Ac-LysargiNase, resulting in shorter K-ε-GG peptides for better identification. The enzyme Ac-LysargiNase is expected to serve as an option for increasing the efficiency of modified site identification in ubiquitome research.


Asunto(s)
Lisina/análisis , Péptidos/metabolismo , Espectrometría de Masas en Tándem , Tripsina/metabolismo , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Exopeptidasas/metabolismo , Lisina/metabolismo , Péptidos/química , Ubiquitinación
13.
Rapid Commun Mass Spectrom ; 33(12): 1067-1075, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30900783

RESUMEN

RATIONALE: LysargiNase is a novel characterized metalloprotease that can cleave the N-terminii of lysine or arginine residues. The peptides generated by LysargiNase are just mirrors to those generated by trypsin. These characteristics of LysargiNase provide a powerful tool for mass spectrometry (MS)-based proteomics research. A highly active and stable LysargiNase produced by an easy and inexpensive method could greatly benefit proteomics research. Here, we report the soluble recombinant expression, purification and acetyl modification of LysargiNase in Escherichia coli. METHODS: The coding sequence of LysargiNase with an enterokinase cleavage site at the N-terminus was inserted into plasmid pGEX-4 T-2 and transformed into E. coli BL21 (DE3). The strain was cultured in a 14-L fermenter with a working volume of 5 L. The protein expression was induced by adding isopropyl-ß-D-thiogalactoside (IPTG) to a final concentration of 1 mM. The recombinant LysargiNase was loaded onto a GSTrap and an on-column digestion was performed to remove the GST tag and was subsequently purified by chromatographic purification. In vitro acetylation of LysargiNase was performed by using acetic anhydride. The digestion efficiency and specificity of recombinant LysargiNase and acetylated LysargiNase were compared with simple protein substrate, human serum albumin (HSA), and a complex proteomic sample, yeast lysate, by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). RESULTS: Highly soluble expression of recombinant LysargiNase was achieved by plasmid pGEX-4 T-2 in E. coli BL21 (DE3). In addition, acetylation of purified LysargiNase significantly increased its resistance to autolysis, which resulted in a more complete digestion of proteomics samples and more identified peptides and proteins by LC/MS/MS. CONCLUSIONS: In this study, we constructed a highly soluble expression system for producing recombinant LysargiNase in E. coli, which gave tremendous advantages in the downstream purification process. We also confirmed that acetyl modification can increase the stability and activity of recombinant LysargiNase. The study provided a superior way to produce this powerful tool for proteomics research.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/genética , Escherichia coli/enzimología , Metaloproteasas/química , Metaloproteasas/genética , Acetilación , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Escherichia coli/química , Escherichia coli/genética , Expresión Génica , Metaloproteasas/aislamiento & purificación , Metaloproteasas/metabolismo , Methanosarcina/enzimología , Methanosarcina/genética , Plásmidos/genética , Plásmidos/metabolismo , Proteómica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masas en Tándem
14.
J Proteome Res ; 17(5): 1812-1825, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29611422

RESUMEN

To gain a deep understanding of yeast-cell response to heat stress, multiple laboratory strains have been intensively studied via genome-wide expression analysis for the mechanistic dissection of classical heat-shock response (HSR). However, robust industrial strains of Saccharomyces cerevisiae have hardly been explored in global analysis for elucidation of the mechanism of thermotolerant response (TR) during fermentation. Herein, we employed data-independent acquisition and sequential window acquisition of all theoretical mass spectra based proteomic workflows to characterize proteome remodeling of an industrial strain, ScY01, responding to prolonged thermal stress or transient heat shock. By comparing the proteomic signatures of ScY01 in TR versus HSR as well as the HSR of the industrial strain versus a laboratory strain, our study revealed disparate response mechanisms of ScY01 during thermotolerant growth or under heat shock. In addition, through proteomics data-mining for decoding transcription factor interaction networks followed by validation experiments, we uncovered the functions of two novel transcription factors, Mig1 and Srb2, in enhancing the thermotolerance of the industrial strain. This study has demonstrated that accurate and high-throughput quantitative proteomics not only provides new insights into the molecular basis for complex microbial phenotypes but also pinpoints upstream regulators that can be targeted for improving the desired traits of industrial microorganisms.


Asunto(s)
Redes Reguladoras de Genes , Respuesta al Choque Térmico , Proteoma/análisis , Saccharomyces cerevisiae/fisiología , Termotolerancia/genética , Fermentación , Complejo Mediador/fisiología , Proteínas Represoras/fisiología , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/fisiología , Especificidad de la Especie , Factores de Tiempo , Factores de Transcripción
15.
J Proteome Res ; 16(2): 738-747, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27995803

RESUMEN

Proteomic analysis with data-independent acquisition (DIA) approaches represented by the sequential window acquisition of all theoretical fragment ion spectra (SWATH) technique has gained intense interest in recent years because DIA is able to overcome the intrinsic weakness of conventional data-dependent acquisition (DDA) methods and afford higher throughout and reproducibility for proteome-wide quantification. Although the raw mass spectrometry (MS) data quality and the data-mining workflow conceivably influence the throughput, accuracy and consistency of SWATH-based proteomic quantification, there lacks a systematic evaluation and optimization of the acquisition and data-processing parameters for SWATH MS analysis. Herein, we evaluated the impact of major acquisition parameters such as the precursor mass range, isolation window width and accumulation time as well as the data-processing variables including peak extraction criteria and spectra library selection on SWATH performance. Fine tuning these interdependent parameters can further improve the throughput and accuracy of SWATH quantification compared to the original setting adopted in most SWATH proteomic studies. Furthermore, we compared the effectiveness of two widely used peak extraction software PeakView and Spectronaut in discovery of differentially expressed proteins in a biological context. Our work is believed to contribute to a deeper understanding of the critical factors in SWATH MS experiments and help researchers optimize their SWATH parameters and workflows depending on the sample type, available instrument and software.


Asunto(s)
Procesamiento Proteico-Postraduccional/genética , Proteoma/genética , Proteómica/estadística & datos numéricos , Programas Informáticos , Cromatografía Liquida/estadística & datos numéricos , Minería de Datos , Espectrometría de Masas en Tándem/métodos
16.
Mol Cell Proteomics ; 14(7): 1885-97, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25926660

RESUMEN

Saccharomyces cerevisiae has been intensively studied in responses to different environmental stresses such as heat shock through global omic analysis. However, the S. cerevisiae industrial strains with superior thermotolerance have not been explored in any proteomic studies for elucidating the tolerance mechanism. Recently a new diploid strain was obtained through evolutionary engineering of a parental industrial strain, and it exhibited even higher resistance to prolonged thermal stress. Herein, we performed iTRAQ-based quantitative proteomic analysis on both the parental and evolved industrial strains to further understand the mechanism of thermotolerant adaptation. Out of ∼ 2600 quantifiable proteins from biological quadruplicates, 193 and 204 proteins were differentially regulated in the parental and evolved strains respectively during heat-stressed growth. The proteomic response of the industrial strains cultivated under prolonged thermal stress turned out to be substantially different from that of the laboratory strain exposed to sudden heat shock. Further analysis of transcription factors underlying the proteomic perturbation also indicated the distinct regulatory mechanism of thermotolerance. Finally, a cochaperone Mdj1 and a metabolic enzyme Adh1 were selected to investigate their roles in mediating heat-stressed growth and ethanol production of yeasts. Our proteomic characterization of the industrial strain led to comprehensive understanding of the molecular basis of thermotolerance, which would facilitate future improvement in the industrially important trait of S. cerevisiae by rational engineering.


Asunto(s)
Adaptación Fisiológica , Respuesta al Choque Térmico , Microbiología Industrial , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura , Carbono/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Transcripción/metabolismo
17.
Anal Chem ; 88(5): 2784-91, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26810586

RESUMEN

Detection of proteins containing single amino acid polymorphisms (SAPs) encoded by nonsynonymous SNPs (nsSNPs) can aid researchers in studying the functional significance of protein variants. Most proteogenomic approaches for large-scale SAPs mapping require construction of a sample-specific database containing protein variants predicted from the next-generation sequencing (NGS) data. Searching shotgun proteomic data sets against these NGS-derived databases allowed for identification of SAP peptides, thus validating the proteome-level sequence variation. Contrary to the conventional approaches, our study presents a novel strategy for proteome-wide SAP detection without relying on sample-specific NGS data. By searching a deep-coverage proteomic data set from an industrial thermotolerant yeast strain using our strategy, we identified 337 putative SAPs compared to the reference genome. Among the SAP peptides identified with stringent criteria, 85.2% of SAP sites were validated using whole-genome sequencing data obtained for this organism, which indicates high accuracy of SAP identification with our strategy. More interestingly, for certain SAP peptides that cannot be predicted by genomic sequencing, we used synthetic peptide standards to verify expression of peptide variants in the proteome. Our study has provided a unique tool for proteogenomics to enable proteome-wide direct SAP identification and capture nongenetic protein variants not linked to nsSNPs.


Asunto(s)
Aminoácidos/química , Proteoma , Espectrometría de Masas en Tándem/métodos
18.
Chem Sci ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39421202

RESUMEN

Colorectal cancer (CRC) is a major cause of cancer-related death worldwide and an effective screening strategy for diagnosis of early-stage CRC is highly desired. Although extracellular vesicles (EVs) are expected to become some of the most promising tools for liquid biopsy of early disease diagnosis, the existing EV-based proteomics methods for practical application in clinical samples are limited by technical challenges in high-throughput isolation and detection of EVs. In the current study, we have developed a simplified and efficient EV-based proteomics strategy for early diagnosis of CRC. DSPE-functionalized beads were specifically designed that enabled direct capture of EVs from plasma samples in 10 minutes with good reproducibility and comprehensive proteome coverage. The single-pot, solid-phase-enhanced sample-preparation (SP3) technology was then combined with data-independent acquisition mass spectrometry (DIA-MS) for in-depth analysis and quantification of EV proteomes. From a cohort with 30 individuals including 11 healthy controls, 8 patients with adenomatous polyp and 11 patients with early-stage CRC, our streamlined workflow reproducibly quantified over 800 proteins from their plasma-derived EV samples, from which dysregulated protein signatures for molecular diagnosis of CRC were revealed. We selected a panel of 10 protein markers to train a machine learning (ML) model, which resulted in accurate prediction of polyp and early-stage CRC in an independent and single-blind validation cohort with excellent diagnostic ability of 89.3% accuracy. Our simplified and efficient clinical proteomic strategy will serve as a valuable tool for fast, accurate, and cost-effective diagnosis of CRC that can be easily extended to other disease samples for discovery of unique EV-based biomarkers.

19.
Talanta ; 253: 123564, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35710467

RESUMEN

Ubiquitin-binding domains (UBDs) are modular elements that bind non-covalently to the ubiquitin and ubiquitin chains. The preferences of UBDs for ubiquitin chains of specific length and linkage are central to their functions. We demonstrated that an artificial tandem hybrid UBD (ThUBD) exhibits an unbiased high affinity to all ubiquitin chains and is a promising tool for global ubiquitination profiling research. In this study, we labeled fluorescein on the four cysteine residues in the N-terminal glutathione S-transferase (GST) tag of ThUBD, generating a fluorescein-labeled ThUBD (ThUBD-Flu) probe for direct polyubiquitination signal imaging and visualization. Compared to the canonical ubiquitin antibody method, the ThUBD-Flu is hyper-sensitive and accurate to detect ubiquitination signal. More importantly, the ThUBD-Flu probe provided, for the first time, a widely applicable, super-sensitive and unbiased technique for in situ detection of intracellular polyubiquitination signal through immunofluorescence staining, which was only achievable with recombinant fluorescence tag fused ubiquitin gene previously. We propose that ThUBD-Flu, combined with evolving microscopy technology, could serve as prototypes to track and trace cellular polyubiquitination signal in vivo.


Asunto(s)
Microscopía , Ubiquitina , Fluoresceína
20.
Microbiol Spectr ; 10(1): e0086021, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35019682

RESUMEN

Human neutrophil peptide-1 (HNP-1) is a promising antibiotic candidate, but its clinical applications have been hampered by challenges during mass production and an inadequate understanding of its bactericidal mechanisms. In this study, we demonstrated that Escherichia coli expressing full-length preproHNP-1 secretes a soluble form of HNP-1, which can be recovered from the total cell lysate after isopropyl thio-ß-d-galactoside (IPTG) induction and ultrafiltration. Label-free quantitative proteomics and co-immunoprecipitation experiments revealed that HNP-1 induces cell apoptosis in bacteria by causing DNA and membrane damage. Notably, we found that HNP-1 disrupts the DNA damage response pathway by interfering with the binding of RecA to single-stranded DNA (ssDNA). Further experiments demonstrated that HNP-1 encapsulated in liposomes inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) and meropenem-resistant Pseudomonas aeruginosa (MRPA). These results indicated that recombinant protein expression may be a simple and cost-effective solution to produce HNP-1 and that RecA inhibition via HNP-1 may serve as an alternative strategy to counteract antibiotic resistance. IMPORTANCE Human neutrophil peptide-1 (HNP-1) is a promising antibiotic candidate, but its clinical application has been hampered by the difficulty of mass production and an inadequate understanding of its bactericidal mechanisms. In this study, we demonstrated that recombinant protein expression combined with ultrafiltration may be a simple and cost-effective solution to HNP-1 production. We further found that HNP-1 induces bacterial apoptosis and prevents its SOS repair pathway from binding to the RecA protein, which may be a new antibacterial mechanism. In addition, we showed that HNP-1 encapsulated in liposomes inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) and meropenem-resistant Pseudomonas aeruginosa (MRPA). These results provide new insights into the production and antibacterial mechanism of HNP-1, both of which may promote its clinical application.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/metabolismo , alfa-Defensinas/genética , alfa-Defensinas/farmacología , Antibacterianos/metabolismo , Farmacorresistencia Bacteriana , Escherichia coli/genética , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , alfa-Defensinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA